Atnaujinkite slapukų nuostatas

Nanoengineering of Biomaterials: Drug Delivery & Biomedical Applications 2 Volumes [Kietas viršelis]

Edited by (Gupta College of Technological Sciences, India), Edited by (Gandhi National Tribal University, India)
  • Formatas: Hardback, 1056 pages, aukštis x plotis x storis: 252x178x58 mm, weight: 2313 g
  • Išleidimo metai: 19-Jan-2022
  • Leidėjas: Blackwell Verlag GmbH
  • ISBN-10: 3527349049
  • ISBN-13: 9783527349043
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 1056 pages, aukštis x plotis x storis: 252x178x58 mm, weight: 2313 g
  • Išleidimo metai: 19-Jan-2022
  • Leidėjas: Blackwell Verlag GmbH
  • ISBN-10: 3527349049
  • ISBN-13: 9783527349043
Kitos knygos pagal šią temą:
A comprehensive discussion of various types of nanoengineered biomaterials and their applicationsIn Nanoengineering of Biomaterials: Drug Delivery & Biomedical Applications, an expert team of chemists delivers a succinct exploration of the synthesis, characterization, in-vitro and in-vivo drug molecule release, pharmacokinetic activity, pharmacodynamic activity, and the biomedical applications of several types of nanoengineered biomaterials. The editors have also included resources to highlight the most current developments in the field.The book is a collection of valuable and accessible reference sources for researchers in materials chemistry and related disciplines. It uses a functions-directed approach to using organic and inorganic source compounds that translate into biological systems as scaffolds, micelles, dendrimers, and other delivery systems.Nanoengineering of Biomaterials offers readers up-to-date chemistry and material science insights that are readily transferrable t

o biomedical systems. The book also includes: Thorough introductions to alginate nanoparticle delivery of therapeutics and chitosan-based nanomaterials in biological applications Comprehensive explorations of nanostructured carrageenan as a drug carrier, gellan gum nanoparticles in drug delivery, and guar-gum nanoparticles in the delivery of bioactive molecules Practical discussions of protein-based nanoparticles for drug delivery, solid lipid nanoparticles as drug carriers, and pH-responsive nanoparticles in therapy In-depth examinations of stimuli-responsive nano carriers in drug targetingPerfect for pharmaceutical chemists, materials scientists, polymer chemists, life scientists, and medicinal chemists, Nanoengineering of Biomaterials: Drug Delivery and Biomedical Applications is also an indispensable resource for biologists and bioengineers seeking a one-stop reference on the transferability of materials chemistry and nanotechnology to biomedicine.

VOLUME I- DRUG DELIVERYChapter 1Alginate nanoparticles delivery of therapeuticsChapter 2Chitosan based nanomaterials in biological applicationsChapter 3Nanostructured Carrageenan as drug carrierChapter 4Gellan gum nanoparticles in drug deliveryChapter 5Guar-gum nanoparticles in delivery of Bioactive moleculesChapter 6Protein-based nanoparticles for drug deliveryChapter 7Solid lipid nanoparticles as drug carrierChapter 8pH-Responsive nanoparticles in therapyChapter 9Stimuli-responsive nano carrier in drug targetingChapter 10Polymer grafted nanoparticles in therapyChapter 11Poly(lactic acid)(PLA)-based nano systems for drug deliveryChapter 12Glycol-nanoparticles (GNPs) as a drug carrierVOLUME II- BIOMEDICAL APPLICATIONSChapter 1Alginate based nano systems for biomedical applicationsChapter 2Chitosan based nanocarriers in gene deliveryChapter 3Polymeric nano systems in tissue engineeringChapter 4Polymeric nanofibers in biomedical applicationChapter5Micellar nanoparticulate systems fo

r biomedical applicationChapter 6Gold nanoparticles in therapy and biomedical imagingChapter 7Graphene nanoparticles and its biomedical potentialChapter 8Ceramic nanomaterials in bone and tissue engineeringChapter 9Inorganic material-based nanocarriers for delivery of biomoleculesChapter 10Magnetic nanoparticles in theranostic applicationsChapter 11Quantum dots in biomedicineChapter 12Biomedical potential of Dendrimers
Preface xvii
About the Editors xix
1 Chitosan-Based Nanoparticles for Drug Delivery
1(32)
Elham Rostami
1.1 Introduction
1(1)
1.2 Chemical and Biological Properties of Chitosan
2(2)
1.2.1 Chemical Modification of Chitosan
4(1)
1.3 Biomedical Applications of Chitosan and Its Derivatives
4(3)
1.3.1 Chitosan Derivatives
4(1)
1.3.1.1 Carboxymethyl Chitosan
4(1)
1.3.1.2 Quaternized Chitosan
5(1)
1.3.1.3 Alkyl Chitosan
6(1)
1.3.1.4 Cyclodextrin-Linked Chitosan
6(1)
1.4 Chitosan and Chitosan Derivatives in Drug Delivery Systems
7(14)
1.4.1 Using Chitosan-Based Polymeric Nanoparticles
8(1)
1.4.2 Ph-Sensitive Chitosan for Gastrointestinal Delivery
9(1)
1.4.3 Ph-Responsive Release
10(1)
1.4.4 Gastric-Specific Drug Delivery
11(2)
1.4.5 Enzyme-Responsive Release
13(1)
1.4.6 Electro-Sensitive Release
13(1)
1.4.7 Subcutaneous Delivery
14(1)
1.4.8 Growth Factor Delivery
14(1)
1.4.9 Cancer Therapy
15(1)
1.4.10 Oral Drug Delivery
16(1)
1.4.11 Drug Delivery in the Oral Cavity
16(1)
1.4.12 Drug Delivery in the GI Tract
17(1)
1.4.13 Colon-Specific Drug Delivery
18(1)
1.4.14 Buccal Drug Delivery
19(1)
1.4.15 Ophthalmic Delivery
20(1)
1.4.16 Transdermal Delivery
20(1)
1.5 Wound Healing
21(1)
1.6 Conclusion
21(12)
References
22(11)
2 Gellan Gum and Its Composites: Suitable Candidate for Efficient Nanodrug Delivery
33(30)
Joseph Pushpa Sweety
Nandakumar Selvasudha
Unnikrishnan M. Dhanalekshmi
Nagarajan Sridurgadevi
2.1 Introduction
33(1)
2.2 Source, Chemistry, and Types of Gellan Gum
34(2)
2.2.1 Sources of Gellan Gum
34(1)
2.2.2 Chemistry of Gellan Gum
35(1)
2.2.3 Types of Gellan Gum
35(1)
2.2.3.1 Native Gellan Gum
35(1)
2.2.3.2 Deacetylated Gellan Gums
36(1)
2.2.3.3 High Acyl Gellan Gums
36(1)
2.2.3.4 Low Acyl Gellan Gums
36(1)
2.2.3.5 Clarified Gellan Gums
36(1)
2.3 Physicochemical Properties of Gellan Gum Favoring Nanodrug Delivery Applications
36(1)
2.3.1 Gelling Characteristics and Texture Properties
36(1)
2.3.1.1 Concentration of Ions
37(1)
2.3.1.2 Acetyl Content
37(1)
2.3.1.3 Gel pH and Hydrophilic Ingredients
37(1)
2.4 Gellan Gum-Based Nanodrug Delivery Systems
37(3)
2.4.1 Native
37(1)
2.4.2 Chemical Derivatives
38(1)
2.4.3 Physical Blends
38(1)
2.4.3.1 Gellan Gum with Natural Polymers
38(2)
2.4.3.2 Gellan Gum with Synthetic Polymers
40(1)
2.5 Gellan Gum Composites with Natural and Synthetic Polymers
40(5)
2.5.1 Grafting with Natural Polymers
40(4)
2.5.2 Grafting with Synthetic Polymers
44(1)
2.6 Nanodrug Delivery Potential of Gellan Gum and Its Composites at Different Administration Routes
45(3)
2.6.1 Oral Delivery
45(1)
2.6.2 Parenteral Delivery
46(2)
2.6.3 Topical and Ophthalmic Delivery
48(1)
2.7 Potential Ability of Gellan Gum and Its Composite-Based Nanodrug Delivery in Various Diseases
48(2)
2.8 Application of Gellan Gum as Nanodrug Delivery Carrier in Various Fields
50(3)
2.8.1 Food
50(1)
2.8.2 Pharmaceutical
50(1)
2.8.3 Tissue Engineering
51(1)
2.8.4 Bioremediation Applications
51(2)
2.8.5 Personal Care
53(1)
2.9 Environmental Impacts, Commercialization Aspects, and Challenges of Gellan Gum-Based Nanodrug Delivery Systems in the Pharmaceutical Industry
53(1)
2.10 Conclusions
54(9)
References
54(9)
3 Guar Gum-Based Novel Nanodrug Delivery Systems
63(28)
Nirmal Aravindaraj
Leseeta Suresh
Venkateshwaran Krishnaswami
Ruckmani Kandasamy
3.1 Introduction
63(1)
3.2 Physicochemical Properties of Guar Gum
64(2)
3.2.1 Rheology
64(1)
3.2.2 Rate of Hydration
64(1)
3.2.3 Viscosity
64(1)
3.2.3.1 Factors Influencing Viscosity and Hydration Rate
64(1)
3.2.4 Hydrogen Bonding
65(1)
3.2.5 Synergistic Effect
65(1)
3.2.6 Gelling Property
66(1)
3.2.7 Specific Rotation
66(1)
3.3 Extraction of Guar Gum
66(1)
3.4 Modifications of Guar Gum
66(7)
3.4.1 Chemical Modification
66(1)
3.4.1.1 Derivatization
67(2)
3.4.1.2 Other Derivatives
69(1)
3.4.1.3 Cross-linking
69(3)
3.4.1.4 Grafting
72(1)
3.4.2 Physical Modifications
72(1)
3.5 Guar Gum in Drug Formulation
73(4)
3.6 Guar Gum Nanoformulations
77(5)
3.7 Conclusions
82(9)
Acknowledgment
82(1)
References
82(9)
4 Chitosan-Based Nanocarriers for Gene Delivery
91(16)
Hani Nasser Abdelhamid
4.1 Introduction
91(1)
4.2 Isolation of Chitosan and Their Chemistry
92(1)
4.3 Synthesis of Chitosan-Gene Therapeutic Agent's Polyplexes
93(1)
4.4 Advantages of Chitosan as a Carrier for Gene Therapeutic Agent
93(1)
4.4.1 High Biocompatibility
93(1)
4.4.2 High Efficiency
93(1)
4.4.3 Strong Interaction with Gene Therapeutic Agents
93(1)
4.4.4 Protection
94(1)
4.4.5 Short-Term Transgene Expression
94(1)
4.4.6 Form Small Polyplexes
94(1)
4.5 Factors Affecting the Performance of Chitosan
94(4)
4.5.1 The Ratio of Chitosan to Gene Therapeutic Agents
94(1)
4.5.2 Properties of Chitosan
94(1)
4.5.3 Molecular Weight
95(1)
4.5.4 Degree of Deacetylation (DDA)
95(1)
4.5.5 Modification of Chitosan
96(1)
4.5.6 Cell Types
97(1)
4.5.7 Ph Value for the Cell Media
97(1)
4.5.8 Synthesis of the Chitosan-Gene Therapeutic Agent
97(1)
4.5.9 Mechanism of Transfection
98(1)
4.6 Conclusions
98(9)
Acknowledgments
99(1)
References
99(8)
5 Novel Approaches of Solid Lipid Nanoparticles as Drug Carrier
107(38)
Heba A. Gad
Reham S. Elezaby
Mai Mansour
Rania M. Hathout
5.1 Introduction
107(1)
5.2 Formulation Components of Solid Lipid Nanoparticles
108(1)
5.3 Methods of Preparation of the Solid Lipid Nanoparticles
109(3)
5.3.1 High-Pressure Homogenization (HPH) Methods
109(1)
5.3.1.1 Hot Homogenization Method
110(1)
5.3.1.2 Cold Homogenization Method
110(1)
5.3.2 Ultrasonication/High-Speed Homogenization Method
110(1)
5.3.3 Solvent Emulsification Evaporation Method
111(1)
5.3.4 Solvent Emulsification-Diffusion Method
111(1)
5.3.5 Microemulsion-Based Method
111(1)
5.3.6 Double Emulsion Method
111(1)
5.3.7 Supercritical Fluid Method
111(1)
5.3.8 Spray-Drying Method
112(1)
5.3.9 Film-Ultrasound Dispersion Method
112(1)
5.4 Characterization Techniques of Solid Lipid Nanoparticles
112(2)
5.4.1 Particle Size, Particle Size Distribution, and Surface Charge
112(1)
5.4.2 Encapsulation Efficiency and Drug Loading
113(1)
5.4.3 Surface Morphology
113(1)
5.4.4 Degree of Crystallinity
113(1)
5.4.5 In Vitro Drug Release
114(1)
5.5 Surface-Modified Solid Lipid Nanoparticles
114(6)
5.5.1 Chitosan-Coated SLNs
115(2)
5.5.2 Charge-Coated SLNs
117(1)
5.5.3 Surfactant-Coated SLNs
117(2)
5.5.4 PEGylated SLNs
119(1)
5.5.5 Polymer-Modified SLNs
120(1)
5.6 Stimuli-Responsive SLNs
120(9)
5.6.1 Thermo-Responsive SLNs
121(4)
5.6.2 Magnetic SLNs
125(1)
5.6.3 Redox SLNs
126(1)
5.6.4 Ph-Responsive SLNs
127(2)
5.7 Utilizing Chemoinformatics Tools in Modeling Drugs-Solid Lipid Nanoparticles Interactions
129(16)
5.7.1 The Steps of Molecular Modeling Dynamics and Docking Experiments to Model the Drugs-SLNs Systems
130(1)
5.7.1.1 Preparation of the Chemical Structure of the Lipid Used in the SLNs
130(1)
5.7.1.2 Molecular Dynamics Simulations
130(1)
5.7.1.3 Preparation of the Chemical Structures of the Drugs or Molecules to Be Loaded in the SLNs
130(1)
5.7.1.4 Energy Minimization
130(1)
5.7.1.5 Molecular Docking Experiments
130(3)
References
133(12)
6 Multifunctional Polymeric Nanoparticles in Targeted and Controlled Delivery for Cancer Therapy
145(36)
Yi Li
6.1 Introduction
145(1)
6.2 Multifunctional Polymeric Nanoparticles
146(6)
6.2.1 Building Polymers for Multifunctional Polymeric Nanoparticles
147(1)
6.2.1.1 Synthesis of Polymers
148(1)
6.2.1.2 Protecting Polymers of Nanoparticles
149(1)
6.2.2 Major Types of Polymeric Nanoparticles
149(1)
6.2.2.1 Micelles
150(1)
6.2.2.2 Vesicles
150(1)
6.2.3 Preparation Methods of Polymeric Nanoparticles
151(1)
6.2.3.1 Thin Film Hydration
151(1)
6.2.3.2 Dialysis
151(1)
6.2.3.3 Nanoprecipitation
152(1)
6.2.3.4 Oil-in-Water Emulsion
152(1)
6.2.3.5 Stimulus-Induced Aggregation
152(1)
6.3 Environmental Responsiveness of Multifunctional Polymeric Nanoparticles
152(6)
6.3.1 Thermo-Responsive Nanoparticles
153(1)
6.3.2 Ph-Responsive Nanoparticles
154(1)
6.3.3 Redox-Responsive Nanoparticles
155(1)
6.3.4 Dual-Responsive Nanoparticles
156(2)
6.4 Active Targeting of Polymeric Nanoparticles
158(2)
6.5 Therapeutic Applications of Multifunctional Polymeric Nanoparticles
160(5)
6.5.1 Drug Delivery
160(1)
6.5.2 Gene Delivery
161(2)
6.5.3 Co-delivery of a Drug and a Gene
163(2)
6.6 Cancer Theranostics Using Multifunctional Polymeric Nanoparticles
165(2)
6.7 Summary
167(14)
List of Abbreviations
168(1)
Acknowledgment
169(1)
References
169(12)
7 Stimulus-Responsive Nanoparticles for Therapeutic Stabilization of Atherosclerosis
181(36)
Sourabh Mehta
Nadim Ahamad
Mahima Dewani
Prateek Bhardwaj
Rinti Banerjee
7.1 Introduction
181(2)
7.2 Pathophysiological Characteristics of Atherosclerosis
183(1)
7.3 Why Stimuli-Responsive Nanoparticles?
184(2)
7.4 Endogenous Stimuli-Responsive Nanoparticles (Endo-SRNs)
186(7)
7.4.1 Ph-Responsive
186(2)
7.4.2 Reactive Oxygen Species (ROS)-Responsive
188(3)
7.4.3 Enzymes-Responsive
191(1)
7.4.4 Shear Force-Responsive
192(1)
7.5 Exogenous Stimuli-Responsive Nanoparticles (Exo-SRNs)
193(8)
7.5.1 Ultrasound-Responsive
193(2)
7.5.2 Photoresponsive
195(1)
7.5.2.1 Photodynamic Therapy
195(1)
7.5.2.2 Photothermal Therapy
196(1)
7.5.3 Magnetic Hyperthermia
197(3)
7.5.4 Use of Exo-SRNs Beyond Adjustable Drug Release
200(1)
7.6 Animal Models for Atherosclerosis
201(2)
1.1 Challenges, Clinical Progress, and Future Direction
203(1)
7.8 Conclusions
204(13)
Acknowledgment
205(1)
Conflict of Interest
205(1)
List of Abbreviations
205(1)
References
206(11)
8 PLGA Nanoparticles in Drug Delivery
217(44)
Chandrani Sarkar
Nagavendra Kommineni
Arun Butreddy
Raj Kumar
Naveen Bunekar
Kishan Gugulothu
8.1 Introduction
217(2)
8.2 Structure and Chemistry of PLGA
219(1)
8.3 Synthesis of PLGA
220(1)
8.4 Physicochemical Properties of PLGA
221(3)
8.4.1 Molecular Weight and Intrinsic Viscosity
221(1)
8.4.2 Monomer Ratio
222(1)
8.4.3 Crystallinity and Glass Transition Temperature
222(1)
8.4.4 End Group Functionalization
223(1)
8.4.5 Biodegradation
223(1)
8.4.6 Solubility
224(1)
8.4.7 Thermal Stability
224(1)
8.4.8 Shape of PLGA (Linear vs. Glucose)
224(1)
8.5 Synthesis of PLGA Nanoparticles
224(7)
8.5.1 Emulsification--Evaporation Method
226(1)
8.5.2 Emulsification Diffusion Method
227(1)
8.5.3 Emulsification Reverse Salting-Out Method
228(1)
8.5.4 Phase Separation (Coacervation) Method
229(1)
8.5.5 Spray-Drying Method
229(1)
8.5.6 Nanoprecipitation Method
229(1)
8.5.7 Microfluidic Method
230(1)
8.6 Drug Release Mechanism from PLGA Nanoparticles
231(2)
8.7 Surface Modification of PLGA Nanoparticles
233(1)
8.8 Applications of PLGA Nanoparticles in Drug Delivery
234(10)
8.8.1 PLGA-Based Nanoparticles for the Treatment of Pulmonary Diseases
235(1)
8.8.2 PLGA-Based Nanoparticles for the Treatment of Ophthalmic Diseases
235(5)
8.8.3 PLGA-Based Nanoparticles for the Treatment of Cardiovascular Diseases
240(1)
8.8.4 PLGA-Based Nanoparticles for the Treatment of Neurodegenerative Diseases
241(1)
8.8.5 PLGA-Based Nanoparticles for the Treatment of Cancer
241(1)
8.8.6 PLGA-Based Nanoparticles for the Treatment of Infectious Diseases
242(1)
8.8.7 PLGA-Based Nanoparticles for the Treatment of Inflammatory Diseases
243(1)
8.8.8 PLGA-Based Nanoparticles for Tissue Engineering
243(1)
8.9 Conclusions and Future Perspectives
244(17)
Acknowledgments
245(1)
References
245(16)
9 New Insights into Nanoparticulate Carriers for Direct Nose-to-Brain Drug Delivery
261(48)
Chandrakantsing V. Pardeshi
Mayank Handa
Rahul Shukla
9.1 Introduction
261(2)
9.2 Nanoparticle-Mediated Direct Nose-to-Brain Drug Delivery
263(4)
9.2.1 Pathways and Mechanisms for Nose-to-Brain Delivery
263(1)
9.2.2 Properties of Nanomaterials for Direct Nose-to-Brain Drug Delivery
264(2)
9.2.3 Transport Capabilities of Nanomaterials in Direct Nose-to-Brain Drug Delivery
266(1)
9.3 Nanoparticulate Carriers for Direct Nose-to-Brain Drug Delivery
267(11)
9.3.1 Particulate Nanocarriers
267(1)
9.3.1.1 Polymer-Based Nanocarriers
267(6)
9.3.1.2 Lipid-Based Nanocarriers
273(2)
9.3.2 Vesicular Nanocarriers
275(2)
9.3.3 Inorganic Nanoparticles
277(1)
9.4 Approaches for Nanoparticle-Mediated Nose-to-Brain Drug Delivery
278(5)
9.4.1 Targeting Approaches for Nanoparticle-Mediated Nose-to-Brain Drug Delivery
278(1)
9.4.1.1 Passive Targeted Delivery
278(1)
9.4.1.2 Aptamer-Mediated Targeted Delivery
278(1)
9.4.1.3 Peptide-Mediated Targeted Delivery
279(1)
9.4.2 Imaging Approaches for Nanoparticle-Mediated Nose-to-Brain Drug Delivery
279(1)
9.4.2.1 Magnetic Resonance Imaging (MRI)
279(1)
9.4.2.2 Positron Emission Tomography
280(1)
9.4.2.3 Single-Photon Emission Computed Tomography (SPECT)
280(1)
9.4.2.4 Gamma (γ)-Scintigraphy
280(1)
9.4.2.5 Computed Tomography
281(1)
9.4.2.6 Optical Imaging
281(1)
9.4.3 Therapeutic Approaches for Nanoparticle-Mediated Nose-to-Brain Drug Delivery
281(2)
9.5 Nanotechnology for Neuroprotection and Neuronal Tissue Regeneration
283(2)
9.5.1 Role in Neuroprotection
283(1)
9.5.2 Role in Neural Regeneration
284(1)
9.6 Strategies for Enhanced Direct Nose-to-Brain Drug Delivery
285(3)
9.6.1 Mucoadhesion
285(1)
9.6.2 Surface Modification
286(1)
9.6.2.1 Lectin Modifications
286(1)
9.6.2.2 Lactoferrin Modification
287(1)
9.6.2.3 Cell-Penetrating Peptide (CPP) Modification
287(1)
9.7 Toxicity Aspects
288(1)
9.8 Clinical Aspects
289(2)
9.8.1 General Applications
289(1)
9.8.1.1 Delivering Larger Molecules to the CNS
289(1)
9.8.1.2 Delivering DNA Plasmid to the CNS
290(1)
9.8.1.3 Delivering Smaller Molecules to CNS
290(1)
9.8.2 In Treating Parkinson's Disease
290(1)
9.8.3 Treatment with Specific Drugs
290(1)
9.8.3.1 Insulin
290(1)
9.8.3.2 Oxytocin
290(1)
9.9 Regulatory Aspects
291(1)
9.10 Concluding Remarks
292(17)
Conflict of Interest
292(1)
List of Abbreviations
292(2)
References
294(15)
10 PEGylated Nanoparticles as a Versatile Drug Delivery System
309(34)
Priyanka Mohapatra
Deepika Singh
Sanjeeb K. Sahoo
10.1 Introduction
309(2)
10.2 Nanoparticles as Drug Delivery Vehicles
311(1)
10.3 Importance of PEGylation
312(4)
10.3.1 Physical
313(1)
10.3.1.1 PEG Molecular Weight
313(1)
10.3.1.2 PEG Surface Density, Content, and Conformation
314(1)
10.3.1.3 Surface Modification with PEG
314(1)
10.3.2 Biological
315(1)
10.4 PEGylated NPs in Drug Delivery
316(6)
10.4.1 Role of PEGylation in Systemic Delivery of NPs
317(2)
10.4.2 Role of PEGylation in Non-systemic Delivery of NPs
319(1)
10.4.2.1 Delivery of PEGylated NPs in Pulmonary Tract
319(1)
10.4.2.2 Delivery of PEGylated NPs in Gastrointestinal Tract
320(1)
10.4.2.3 Delivery of PEGylated NPs in Vaginal Tract
320(1)
10.4.2.4 Delivery of PEGylated NPs in the Brain
321(1)
10.4.2.5 Delivery of PEGylated NPs in the Eye
321(1)
10.5 Impacts of PEGylation in Disease Diagnosis
322(1)
10.6 PEGylation for Vaccine Nanodelivery
322(1)
10.7 Clinical Applications of PEGylated NPs
323(6)
10.8 PEG Immunogenicity in In Vivo Systems
329(3)
10.8.1 Effects of Repeated Administration of PEGylated NPs
330(1)
10.8.2 Effects of Encapsulated Therapeutics
331(1)
10.8.3 Effects of Physiochemical Properties of NPs
332(1)
10.9 PEG Alternatives
332(1)
10.10 Conclusions and Future Perspectives
333(10)
References
333(10)
11 Mesoporous Bioactive Glass for Bone Tissue Regeneration and Drug Delivery
343(28)
Akrity Anand
Biswanath Kundu
Samit K. Nandi
11.1 Introduction
343(1)
11.2 Generations of Biomaterials for Bone Tissue Engineering
344(2)
11.3 Different Synthesis Techniques for Preparation of MBG
346(6)
11.3.1 Sol--Gel Synthesis
346(2)
11.3.2 EISA Process
348(1)
11.3.3 Microemulsion Method
349(2)
11.3.4 Aerosol-Assisted Sol--Gel Method
351(1)
11.4 Mechanism Behind the Bioactivity
352(2)
11.5 Roles of Therapeutic Ions
354(1)
11.6 Drug Delivery and Surface FunctionaUzation
355(4)
11.7 In Vivo Studies for Bone Regeneration and Drug Delivery
359(2)
11.8 Conclusions and Outlook
361(10)
References
361(10)
12 Pharmacoengineering of Lipid Nanoarchitectonics in Modulating Particle Uptake by Lung Macrophages
371(40)
Maharshi Thalia
Subham Banerjee
12.1 Introduction
371(1)
12.2 Lung Macrophages
371(5)
12.2.1 Origin of Macrophages
372(1)
12.2.2 Types of Lung Macrophages
372(1)
12.2.2.1 Pulmonary Intravascular Macrophages (PIMs)
372(1)
12.2.2.2 Airway Macrophages
373(1)
12.2.2.3 Pleural Macrophages (PMs)
373(1)
12.2.2.4 Interstitial Macrophages (IMs)
374(1)
12.2.2.5 Alveolar Macrophages (AMs)
374(2)
12.3 Macrophages Particle Uptake Mechanism
376(4)
12.3.1 Microparticle Uptake Mechanism
376(1)
12.3.2 Nanoparticle Uptake Mechanism
377(1)
12.3.2.1 Clathrin-Mediated Endocytosis
378(1)
12.3.2.2 Caveolae-Mediated Endocytosis
378(1)
12.3.2.3 Clathrin- and Caveolae-Independent Endocytosis
379(1)
12.3.2.4 Macropinocytosis
379(1)
12.4 Lipid Nanoarchitectonics for Lung Macrophages Targeting
380(1)
12.5 Pharmacoengineering of Lipid Nanoarchitectonics to Modulate Macrophages Uptake or Avoidance
380(19)
12.5.1 Passive Targeting
380(7)
12.5.1.1 Particle Size
387(1)
12.5.1.2 Particle Shape
388(1)
12.5.1.3 Particle Surface Charge
388(1)
12.5.1.4 Particle Rigidity
388(1)
12.5.1.5 Particle Hydrophilicity/Hydrophobicity
388(1)
12.5.2 Passive Targeting Studies
389(2)
12.5.3 Active Targeting
391(1)
12.5.3.1 Surface Chemistry of Nanoformulation in Targeting
391(7)
12.5.4 To Avoid the Uptake
398(1)
12.6 Conclusion and Prospects
399(12)
Conflicts of Interest
399(1)
Acknowledgments
399(1)
List of Abbreviations
399(1)
References
400(11)
13 Zein Nanoparticles: Bioactive Compounds and Controlled Delivery
411(1)
Michael R. Nunes
Cleonice G. da Rosa
Mia R. de Borba
Gabriel M. dos Santos
Ana L. Ferreira
Pedro Luiz M. Barreto
13 A Introduction
411(8)
13.2 Bioactive Compounds
412(6)
13.3 Nanocarrier
418(1)
13 A Nanoencapsulation Technique
419(18)
13.5 Nanoparticle Stabilization
420(1)
13.6 Physicochemical Characterization of Nanoparticles
421(4)
13.6.1 Encapsulation Efficiency
421(2)
13.6.2 Particle Size
423(2)
13.6.3 Zeta Potential
425(1)
13.7 Bioactive Compound Controlled Delivery
425(4)
13.8 Conclusions
429(8)
References
430(7)
14 Nanoscale Vaccines: Design, Delivery, and Applications
437(32)
Yadollah Omidi
Mohammad M. Pourseif
Hossein Omidian
Jaleh Barar
14.1 Introduction
437(1)
14.2 Key Aspects of the Induction of Immunity
438(2)
14.3 A Glance at the Vaccinology
440(2)
14.4 Vaccine Design Strategies
442(1)
14.5 Nanoscale Systems in Vaccine Development
443(6)
14.5.1 Liposomes
446(1)
14.5.2 Cubosomes
446(1)
14.5.3 Immune-Stimulating Complexes
447(1)
14.5.4 Solid Lipid Nanoparticles and Nanostructured Lipid Carriers
447(1)
14.5.5 Polymeric NPs and Dendrimers
448(1)
14.5.6 Virus-Like Nanoparticles
449(1)
14.6 Other Nanoscale VDSs
449(5)
14.6.1 AuNPs
449(2)
14.6.2 Quantum Dots
451(1)
14.6.3 Ceramic Nanoparticle
452(1)
14.6.4 Mesoporous Silica Nanoparticles
452(1)
14.6.5 Hybrid Nanoparticles
452(2)
14.7 Beneficial Characteristics of Nanovaccines
454(3)
14.7.1 Formulation
454(1)
14.7.2 Thermal Stability
454(1)
14.7.3 Adjuvanticity and Immune Engineering
455(2)
14.7.4 Targeted Vaccine Delivery
457(1)
14.8 Nanovaccines Biosafety
457(1)
14.9 Final Remarks and Conclusions
458(11)
References
459(10)
15 Lipid-Based Drug Delivery Systems and Their Role in Infection and Inflammation Imaging
469(36)
Merve Karpuz
Mine Silindir-Gunay
15.1 Introduction
469(1)
15.2 Clinical Imaging of Infection and Inflammation
470(6)
15.2.1 Radiography
471(1)
15.2.2 Ultrasound
471(1)
15.2.3 Magnetic Resonance Imaging
472(1)
15.2.4 Computed Tomography
472(1)
15.2.5 Single-Photon Emission Computed Tomography
473(1)
15.2.6 Positron Emission Tomography
474(2)
15.3 Lipid-Based Drug Delivery Systems
476(8)
15.3.1 Emulsions
477(2)
15.3.2 Vesicular Systems
479(1)
15.3.2.1 Liposomes
479(1)
15.3.2.2 Niosomes
480(1)
15.3.3 Lipid Particulate Systems
481(1)
15.3.3.1 Lipospheres
481(1)
15.3.3.2 Solid Lipid Particles
482(2)
15.4 Targeting Strategies for Infection and Inflammation
484(7)
15.4.1 Passive Targeting
485(2)
15.4.2 Active Targeting
487(4)
15.5 Infection or Inflammation Imaging by Lipid-Based Drug Delivery Systems
491(2)
15.5.1 Magnetic Resonance Imaging
491(1)
15.5.2 Computed Tomography
491(1)
15.5.3 Nuclear Imaging
492(1)
15.6 Conclusions
493(12)
References
493(12)
16 Quadrupole Stimuli-Responsive Targeted Polymeric Nanocontainers for Cancer Therapy: Artificial Intelligence in Drug Delivery Systems
505(18)
George Kordas
16.1 Introduction
505(3)
16.2 Experimental
508(1)
16.2.1 Materials and Methods
508(1)
16.2.2 Equipment
509(1)
16.3 Dual Stimuli-Responsive Intelligent Nanocontainers
509(1)
16.4 Quadrupole Stimuli Intelligent Nanocontainers
510(7)
16.4.1 Synthesis
510(1)
16.4.2 Results and Discussion
511(1)
16.4.3 Morphological Characterization
511(1)
16.4.4 DLS Study
511(1)
16.4.5 DOX Loading and Release Studies
512(1)
16.4.6 Cytotoxicity Studies
512(1)
16.4.7 In Vivo Toxicity Study
512(2)
16.4.8 Toxicity Studies
514(1)
16.4.9 In Vivo Biodistribution Analysis in Normal Swiss and HeLa Tumor-Bearing Mice
514(2)
16.4.10 Hyperthermia Properties of the Magnetic Nanoparticles
516(1)
16.5 Folic Acid Targeting Ability
517(2)
16.5.1 Cell Uptake of Folate Targeted Nano4XXs
517(1)
16.5.2 Therapeutic Efficacy of the Nano4Dox Platform
518(1)
16.5.3 Therapeutic Efficacy of the Nano4Cis Platform
519(1)
16.6 Conclusions
519(4)
Acknowledgments
520(1)
References
520(3)
17 Nanostructured Carrageenan as Drug Carrier
523(2)
Pavitra Solanki
Danish Ansari
Yasmin Sultana
17.1 Introduction
523(1)
17.2 Composition and Structure of Carrageenan
524(1)
17.3 Production of Carrageenan
524(1)
17 A Properties of Carrageenan
525(13)
17.5 Methods of Production Techniques of Nanostructured Carrageenan
525(2)
17.5.1 High-Pressure Homogenization
525(1)
17.5.2 Solvent Evaporation
526(1)
17.5.3 Microemulsion Method
526(1)
17.5.4 Double Emulsion
526(1)
17.5.5 Phase Inversion Temperature Method
527(1)
17.5.6 Microwave-Assisted Temperature Technique
527(1)
17.6 Different Types of Nanostructured Carrageenan
527(3)
17.6.1 Nanoparticle
527(1)
17.6.2 Proniosomes
527(1)
17.6.3 Ethosomes
528(1)
17.6.4 Transfersomes
528(1)
17.6.5 Niosomes
528(1)
17.6.6 Nanoemulsions
528(1)
17.6.7 Solid Lipid Nanoparticles (SLN)
529(1)
17.6.8 Nano Lipid Carrier (NLC)
529(1)
17.6.9 Liposomes
529(1)
17.6.10 Polymeric Micelles
529(1)
17.6.11 Nanospheres
530(1)
17.6.12 Nanocapsules
530(1)
17.7 Characterization of Nanostructured Carrageenan
530(3)
17.7.1 Particle Size Determination
530(1)
17.7.1.1 Photon Correlation Spectroscopy
531(1)
17.7.2 Surface Charge Determination
531(1)
17.7.3 Surface Morphology Determination
531(1)
17.7.3.1 Scanning Electron Microscopy (SEM)
532(1)
17.7.3.2 Transmission Electron Microscopy (TEM)
532(1)
17.7.3.3 Atomic Force Microscopy (AFM)
532(1)
17.7.3.4 Differential Scanning Calorimetry (DSC)
532(1)
17.7.3.5 X-Ray Diffraction (XRD)
533(1)
17.8 Physicochemical Stability
533(1)
17.8.1 Physical Stability
534(1)
17.8.2 Chemical Stability
534(1)
17.9 Carrageenan as Active Ingredients Carrier in Pharmaceuticals and Cosmetics
534(2)
17.9.1 Antiosteoporosis Activity
535(1)
17.9.2 As Gelling Agent
535(1)
17.9.3 As an Excipient for Oral Formulations
536(1)
17.9 A Antibacterial Effect of Carrageenan
536(1)
17.9.5 Antiviral Effect of Carrageenan
536(1)
17.9.6 Antifungal Effect of Carrageenan
537(1)
17.10 Application in Drug Delivery
537(1)
17.10.1 Food Industry
537(1)
17.10.2 Cosmetic Industry
537(1)
References 538(5)
Index 543
Sougata Jana, PhD, has published 30 research and review papers in national and international peer reviewed journals. He has edited 10 books and contributed over 45 book chapters to various publications. He works in the field of drug delivery science and technology.

Subrata Jana is Associate Professor at the Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, India. His research focuses on design and synthesis of artificial receptors for the recognition of anions, cations, and N-methylated protein residues.