|
1 Nanostructured Materials for High Efficiency Perovskite Solar Cells |
|
|
1 | (40) |
|
|
|
|
|
|
|
1 | (6) |
|
1.2 Nanostructured Scaffold Layers in PSCs |
|
|
7 | (20) |
|
1.2.1 Nanostructured TiO2 Layers |
|
|
7 | (12) |
|
1.2.2 Nanostructured Al2O3 Layers |
|
|
19 | (1) |
|
1.2.3 Nanostructured ZnO Layers |
|
|
19 | (2) |
|
1.2.4 Nanostructured NiO Layers |
|
|
21 | (1) |
|
1.2.5 Nanostructured Carbon Materials |
|
|
22 | (3) |
|
1.2.6 Other Nanostructured Layers |
|
|
25 | (2) |
|
|
27 | (14) |
|
|
27 | (14) |
|
2 Dielectric Nanomaterials for Silicon Solar Cells |
|
|
41 | (54) |
|
|
|
2.1 Dielectric Nanomaterials in Today's and Future Silicon Solar Cells |
|
|
42 | (4) |
|
2.1.1 Epitaxial Si Foil-Based Solar Cell |
|
|
43 | (1) |
|
2.1.2 Heterojunction Solar Cell with Dielectric Front Side Layer |
|
|
44 | (1) |
|
2.1.3 Solar Cell with Symmetrical Passivation |
|
|
44 | (1) |
|
2.1.4 Solar Cell with Carrier Selective Contacts |
|
|
45 | (1) |
|
2.1.5 Up-Converter Solar Cell |
|
|
45 | (1) |
|
2.2 Theory of Surface Recombination and Surface Passivation |
|
|
46 | (15) |
|
2.2.1 Surface Recombination Model |
|
|
46 | (1) |
|
2.2.2 Dielectric Charges and Near Surface Recombination |
|
|
47 | (4) |
|
2.2.3 Surface Passivation |
|
|
51 | (10) |
|
|
61 | (7) |
|
2.3.1 Plasma Enhanced Chemical Vapor Deposition |
|
|
61 | (2) |
|
2.3.2 Atomic Layer Deposition |
|
|
63 | (2) |
|
2.3.3 Alternative Deposition Methods |
|
|
65 | (1) |
|
2.3.4 Low-Thermal Budget Processing |
|
|
65 | (3) |
|
2.4 Dielectric Multi-oxide Nanolaminates |
|
|
68 | (6) |
|
2.4.1 Zero-Fixed-Charge Passivation Layers |
|
|
68 | (2) |
|
2.4.2 Carrier Selective Contacts |
|
|
70 | (4) |
|
2.5 Dielectric Materials and Light Management |
|
|
74 | (7) |
|
2.5.1 Dielectric Layers for Surface Reflection Control |
|
|
74 | (2) |
|
2.5.2 Concepts for Light Trapping |
|
|
76 | (1) |
|
2.5.3 Spectral Conversion of Light |
|
|
77 | (4) |
|
2.6 Conclusions and Outlook |
|
|
81 | (14) |
|
|
82 | (13) |
|
3 Nanostructured Cathode Buffer Layers for Inverted Polymer Solar Cells |
|
|
95 | (64) |
|
|
|
|
96 | (1) |
|
|
97 | (6) |
|
|
98 | (3) |
|
3.2.2 Nanostructured ZnO Cathode Buffer Layers for Inverted PSCs |
|
|
101 | (2) |
|
3.3 Fabrication of Nanostructured ZnO Films for Inverted PSCs |
|
|
103 | (8) |
|
|
103 | (4) |
|
3.3.2 ZnO CBLs Derived from Pre-fabricated ZnO Nanoparticles |
|
|
107 | (2) |
|
3.3.3 Atomic Layer Deposition |
|
|
109 | (2) |
|
3.4 The Impacts of ZnO CBLs on the Performance of Inverted PSCs |
|
|
111 | (6) |
|
3.4.1 The Impacts of the Morphology of ZnO CBLs on the Performance of Inverted PSCs |
|
|
111 | (4) |
|
3.4.2 The Effects of the Thickness of ZnO CBLs on the Performance of Inverted PSCs |
|
|
115 | (2) |
|
3.5 Doping of ZnO CBLs in Inverted Polymer Solar Cells |
|
|
117 | (5) |
|
3.5.1 Metal Doped ZnO Nano-films |
|
|
117 | (4) |
|
3.5.2 Fullerene Derivatives Doped ZnO Nano-films |
|
|
121 | (1) |
|
3.6 One-Dimensional ZnO Nanostructures for Inverted PSCs |
|
|
122 | (4) |
|
3.7 Surface Modification of ZnO CBLs |
|
|
126 | (11) |
|
3.7.1 UV Illumination Treatment of ZnO CBLs |
|
|
127 | (1) |
|
3.7.2 Fullerene-Based Interlayer Modification of ZnO CBLs |
|
|
128 | (3) |
|
3.7.3 Non-fullerene Based Interlayer Modification of ZnO CBLs |
|
|
131 | (6) |
|
3.8 ZnO-Based Nanocomposites CBLs |
|
|
137 | (7) |
|
3.9 Conclusion and Outlook |
|
|
144 | (15) |
|
|
145 | (14) |
|
4 Nanomaterials for Stretchable Energy Storage and Conversion Devices |
|
|
159 | (34) |
|
|
|
|
159 | (3) |
|
|
162 | (11) |
|
|
162 | (5) |
|
|
167 | (3) |
|
4.2.3 CNT/Graphene Hybrid |
|
|
170 | (2) |
|
|
172 | (1) |
|
|
173 | (1) |
|
|
173 | (6) |
|
|
179 | (2) |
|
|
181 | (3) |
|
4.6 Elemental and Compound Semiconductors |
|
|
184 | (2) |
|
|
186 | (1) |
|
|
187 | (6) |
|
|
188 | (5) |
|
5 Piezoelectric Nanomaterials for Energy Harvesting |
|
|
193 | (22) |
|
|
|
5.1 Introduction to Piezoelectric Nanomaterials |
|
|
193 | (1) |
|
|
194 | (1) |
|
5.2 Properties and Synthesis of Piezoelectric Nanomaterials |
|
|
194 | (8) |
|
|
195 | (2) |
|
5.2.2 Molybdenum Disulfide |
|
|
197 | (3) |
|
5.2.3 Diphenylalanine (FF) Peptide |
|
|
200 | (2) |
|
5.3 Energy Harvesting with Piezoelectric Nanomaterials |
|
|
202 | (8) |
|
5.3.1 Energy Harvesting with Zinc Oxide |
|
|
202 | (5) |
|
5.3.2 Energy Harvesting with Molybdenum Disulfide |
|
|
207 | (3) |
|
5.4 Conclusions and Outlook |
|
|
210 | (5) |
|
|
211 | (4) |
|
6 Discotic Liquid Crystals for Self-organizing Photovoltaics |
|
|
215 | (38) |
|
|
|
|
216 | (6) |
|
6.1.1 Organic Photovoltaic Solar Cells |
|
|
216 | (2) |
|
6.1.2 Discotic Liquid Crystals |
|
|
218 | (4) |
|
6.2 Discotic Liquid Crystals in Organic Photovoltaic Solar Cells |
|
|
222 | (24) |
|
6.2.1 Liquid Crystalline Porphyrins in OPV |
|
|
223 | (2) |
|
6.2.2 Liquid Crystalline Phthalocyanines in OPV |
|
|
225 | (4) |
|
6.2.3 Liquid Crystalline Hexabenzocoronenes in OPV |
|
|
229 | (8) |
|
6.2.4 Liquid Crystalline Perylenebisimides in OPV |
|
|
237 | (1) |
|
6.2.5 Liquid Crystalline Triphenylenes in OPV |
|
|
238 | (5) |
|
6.2.6 Liquid Crystalline Decacyclene in OPV |
|
|
243 | (2) |
|
6.2.7 Other Liquid Crystalline Discotic Compounds in OPV |
|
|
245 | (1) |
|
6.3 Conclusions and Outlook |
|
|
246 | (7) |
|
|
247 | (6) |
|
7 Vertically-Aligned Carbon Nanotubes for Electrochemical Energy Conversion and Storage |
|
|
253 | (18) |
|
|
|
|
|
|
|
|
253 | (1) |
|
7.2 VA-CNTs for Efficient Energy Conversion and Storage |
|
|
254 | (2) |
|
7.3 VA-CNTs for Energy Conversion |
|
|
256 | (2) |
|
7.4 VA-CNTs for Energy Storage |
|
|
258 | (7) |
|
|
265 | (6) |
|
|
266 | (5) |
|
8 Graphene-Based Electrochemical Microsupercapacitors for Miniaturized Energy Storage Applications |
|
|
271 | (22) |
|
|
|
|
271 | (1) |
|
|
272 | (7) |
|
8.2.1 Electrode Materials |
|
|
274 | (1) |
|
|
275 | (1) |
|
|
276 | (1) |
|
8.2.4 Performance Evaluation |
|
|
277 | (2) |
|
8.3 Interdigital Microsupercapacitors |
|
|
279 | (3) |
|
8.4 Graphene-Based Microsupercapacitors |
|
|
282 | (6) |
|
8.5 Conclusion and Outlooks |
|
|
288 | (5) |
|
|
288 | (5) |
|
9 Incorporating Graphene into Fuel Cell Design |
|
|
293 | (20) |
|
|
|
9.1 It's All Gone Graphene |
|
|
294 | (1) |
|
9.2 Barriers to Commercialisation of Graphene |
|
|
295 | (2) |
|
|
297 | (2) |
|
|
299 | (10) |
|
|
299 | (3) |
|
9.4.2 Laser-Induced Graphene |
|
|
302 | (2) |
|
9.4.3 Reduced Graphene Oxide |
|
|
304 | (3) |
|
|
307 | (2) |
|
9.5 Conclusions and Outlook |
|
|
309 | (4) |
|
|
310 | (3) |
|
10 Mesoporous Materials for Fuel Cells |
|
|
313 | (58) |
|
|
|
|
315 | (2) |
|
10.2 Mesoporous Materials in SOFCs |
|
|
317 | (1) |
|
10.3 Mesoporous Polymer Based PEM |
|
|
318 | (5) |
|
10.3.1 Mesoporous Nafion Membrane |
|
|
319 | (2) |
|
10.3.2 Mesoporous Block Copolymers |
|
|
321 | (2) |
|
10.4 Sulfonated Mesoporous Silica Base PEMs |
|
|
323 | (10) |
|
10.4.1 Sulfonated Mesoporous Silica Fillers for Nafion Membrane |
|
|
324 | (3) |
|
10.4.2 Sulfonated Mesoporous Silica for Alternative Polymer |
|
|
327 | (2) |
|
10.4.3 Sulfonation of Mesoporous Silica |
|
|
329 | (2) |
|
10.4.4 Pore Structure and Acidity of Mesoporous Silica |
|
|
331 | (2) |
|
10.5 Non-sulfonated Mesoporous Silica for PEMs |
|
|
333 | (7) |
|
|
334 | (1) |
|
|
335 | (1) |
|
10.5.3 Protic Ionic Liquids |
|
|
336 | (1) |
|
|
336 | (2) |
|
10.5.5 Alternative Mesoporous Materials for PEM |
|
|
338 | (2) |
|
10.6 Mesoporous Silica Based Inorganic PEMs |
|
|
340 | (11) |
|
10.6.1 Synthesis of HPW/Meso-Silica |
|
|
341 | (3) |
|
10.6.2 Conductivity and Cell Performance of HPW/Meso-Silica Composite Membrane |
|
|
344 | (5) |
|
10.6.3 Proton Diffusion Mechanism in the HPW/Afeso-Silica |
|
|
349 | (1) |
|
10.6.4 HPW/Meso-Silica Membrane Fabrication |
|
|
350 | (1) |
|
10.7 Mesoporous Materials for the Electrode Materials in PEMFC |
|
|
351 | (6) |
|
10.7.1 Mesoporous Carbon Supported Catalyst |
|
|
352 | (3) |
|
10.7.2 Mesoporous Metal Oxide Based Catalyst |
|
|
355 | (2) |
|
|
357 | (14) |
|
|
358 | (13) |
|
11 Thermoelectric Nanocomposites for Thermal Energy Conversion |
|
|
371 | (74) |
|
|
|
|
371 | (3) |
|
11.2 High-Energy Ball-Milling and Produced Thermoelectric Nanoparticles |
|
|
374 | (8) |
|
|
374 | (3) |
|
11.2.2 Ball-Milled Thermoelectric Nanoparticles |
|
|
377 | (5) |
|
11.3 Bottom-Up Techniques to Produce Thermoelectric Nanocomposites |
|
|
382 | (10) |
|
|
382 | (1) |
|
|
383 | (4) |
|
11.3.3 Spark Plasma Sintering |
|
|
387 | (2) |
|
11.3.4 Other Bottom-Up Methods |
|
|
389 | (1) |
|
11.3.5 Advantages and Problems of Current Bottom-Up Techniques |
|
|
390 | (2) |
|
11.4 Thermoelectric Nanocomposites with Enhanced ZT |
|
|
392 | (31) |
|
11.4.1 Bi2Te3 Nanocomposites |
|
|
392 | (9) |
|
11.4.2 SiGe Nanocomposites |
|
|
401 | (9) |
|
11.4.3 PbTe Nanocomposites |
|
|
410 | (3) |
|
11.4.4 PbSe Nanocomposites |
|
|
413 | (2) |
|
11.4.5 Skutterudite Nanocomposites |
|
|
415 | (4) |
|
11.4.6 MgAgSb Nanocomposites |
|
|
419 | (2) |
|
11.4.7 YbAgCu4 Nanocomposites |
|
|
421 | (1) |
|
11.4.8 Other Kinds of Bottom-Up-ed Nanocomposites |
|
|
422 | (1) |
|
11.5 Thermoelectric Devices of Nanocomposites |
|
|
423 | (7) |
|
11.5.1 Manufacturing of Thermoelectric Devices |
|
|
424 | (1) |
|
11.5.2 Thermoelectric Devices and Efficiency |
|
|
425 | (4) |
|
11.5.3 Engineering Efficiency of Thermoelectric Devices |
|
|
429 | (1) |
|
11.6 Conclusions and Outlooks |
|
|
430 | (15) |
|
|
431 | (14) |
|
12 Nanomaterials for Hydrogen Generation from Solar Water Splitting |
|
|
445 | (26) |
|
|
|
|
12.1 Background and Introduction |
|
|
445 | (1) |
|
12.2 Mechanism and Material Requirements for Solar Water Splitting |
|
|
446 | (2) |
|
12.2.1 Mechanism of Solar Water Splitting |
|
|
446 | (1) |
|
12.2.2 Material Requirements for Overall Solar Water Splitting |
|
|
446 | (2) |
|
12.3 Nanomaterials for Hydrogen Generation from Solar Water Splitting |
|
|
448 | (16) |
|
12.3.1 Metal Oxides for Hydrogen Generation from Solar Water Splitting |
|
|
448 | (7) |
|
12.3.2 Metal Chalcogenide and Oxysulfide Nanomaterials |
|
|
455 | (1) |
|
12.3.3 Metal Nitride and Oxynitride Nanomaterials |
|
|
456 | (1) |
|
12.3.4 Other Newly Developed Nanomaterials |
|
|
457 | (7) |
|
12.4 Conclusions and Outlook |
|
|
464 | (7) |
|
|
465 | (6) |
|
13 Nanomaterials for Rechargeable Lithium Batteries |
|
|
471 | (42) |
|
|
|
471 | (3) |
|
13.2 Why Nanomaterials for Batteries? |
|
|
474 | (1) |
|
13.3 Positive Electrode Materials |
|
|
475 | (14) |
|
13.3.1 Commercial Lamellar Oxides |
|
|
476 | (3) |
|
|
479 | (3) |
|
13.3.3 Polyanionic Compounds |
|
|
482 | (7) |
|
13.4 Negative Electrode Materials |
|
|
489 | (16) |
|
13.4.1 Carbonaceous Materials |
|
|
490 | (1) |
|
13.4.2 Titanium Oxides for High Voltage Anodes |
|
|
491 | (5) |
|
13.4.3 Alloy Negative Electrodes |
|
|
496 | (7) |
|
13.4.4 Conversion Materials |
|
|
503 | (2) |
|
|
505 | (8) |
|
|
506 | (7) |
|
14 Self-organized Chiral Liquid Crystalline Nanostructures for Energy-Saving Devices |
|
|
513 | (46) |
|
|
|
|
514 | (1) |
|
14.2 Bistability in Self-organized Chiral Liquid Crystals |
|
|
515 | (18) |
|
14.2.1 Bistability Enabled by Device Optimizations |
|
|
517 | (7) |
|
14.2.2 Bistability Enabled by Novel Chiral Liquid Crystals |
|
|
524 | (6) |
|
14.2.3 Light Driven Bistable Chiral Liquid Crystal Devices |
|
|
530 | (3) |
|
14.3 Solar Energy Related Applications of Chiral Liquid Crystal Bistability |
|
|
533 | (8) |
|
14.3.1 Adaptive Infrared Reflective Smart Window |
|
|
534 | (5) |
|
14.3.2 Photovoltaic Driven LCD and Other LC Modulated Solar Energy Devices |
|
|
539 | (2) |
|
14.4 Light Driven Chiral Liquid Crystal Photonic Devices with Wide Tuning Range |
|
|
541 | (12) |
|
14.4.1 Light Tunable CLC Bragg Reflector |
|
|
542 | (4) |
|
14.4.2 Light Manipulated Micro-patterned and Micro-fluidic Photonic Devices |
|
|
546 | (7) |
|
14.5 Conclusions and Outlook |
|
|
553 | (6) |
|
|
554 | (5) |
|
15 Nanomaterials for the Production of Biofuels |
|
|
559 | (24) |
|
|
|
|
559 | (3) |
|
|
560 | (1) |
|
15.1.2 Chemistries in Biofuel Production |
|
|
560 | (2) |
|
15.2 Fuels Derived from Furfural and 5-Hydroxymethylfurfural |
|
|
562 | (4) |
|
15.3 Long Chain Hydrocarbons via C--C Coupling |
|
|
566 | (3) |
|
15.4 Levulinic Acid-Based Fuels |
|
|
569 | (3) |
|
15.4.1 Hydrogenation of Levulinic Acid |
|
|
570 | (1) |
|
15.4.2 Upgrading of Levulinic Acid into Hydrocarbon Fuels |
|
|
570 | (2) |
|
15.5 Fuels from Sugar Alcohols |
|
|
572 | (4) |
|
|
576 | (2) |
|
15.7 Conclusions and Outlook |
|
|
578 | (5) |
|
|
579 | (4) |
Index |
|
583 | |