Atnaujinkite slapukų nuostatas

Nanomaterials for Sustainable Energy 1st ed. 2016 [Kietas viršelis]

Edited by
  • Formatas: Hardback, 590 pages, aukštis x plotis: 235x155 mm, 36 Illustrations, color; 256 Illustrations, black and white; XVII, 590 p. 292 illus., 36 illus. in color., 1 Hardback
  • Serija: NanoScience and Technology
  • Išleidimo metai: 20-May-2016
  • Leidėjas: Springer International Publishing AG
  • ISBN-10: 3319320211
  • ISBN-13: 9783319320212
  • Formatas: Hardback, 590 pages, aukštis x plotis: 235x155 mm, 36 Illustrations, color; 256 Illustrations, black and white; XVII, 590 p. 292 illus., 36 illus. in color., 1 Hardback
  • Serija: NanoScience and Technology
  • Išleidimo metai: 20-May-2016
  • Leidėjas: Springer International Publishing AG
  • ISBN-10: 3319320211
  • ISBN-13: 9783319320212

This book presents the unique mechanical, electrical, and optical properties of nanomaterials, which play an important role in the recent advances of energy-related applications. Different nanomaterials have been employed in energy saving, generation, harvest, conversion, storage, and transport processes very effectively and efficiently. Recent progress in the preparation, characterization and usage of 1D, 2D nanomaterials and hybrid architectures for energy-related applications and relevant technologies and devices, such as solar cells, thermoelectronics, piezoelectronics, solar water splitting, hydrogen production/storage, fuel cells, batteries, and supercapacitors are covered. Moreover, the book also highlights novel approaches in nanomaterials design and synthesis and evaluating materials sustainability issues. Contributions from active and leading experts regarding important aspects like the synthesis, assembly, and properties of nanomaterials for energy-related applications are compiled into a reference book. As evident from the diverse topics, the book will be very valuable to researchers working in the intersection of physics, chemistry, biology, materials science and engineering. It may set the standard and stimulates future developments in this rapidly emerging fertile frontier of nanomaterials for energy.

1 Nanostructured Materials for High Efficiency Perovskite Solar Cells
1(40)
Meidan Ye
Xueqin Liu
James Iocozzia
Xiangyang Liu
Zhiqun Lin
1.1 Introduction
1(6)
1.2 Nanostructured Scaffold Layers in PSCs
7(20)
1.2.1 Nanostructured TiO2 Layers
7(12)
1.2.2 Nanostructured Al2O3 Layers
19(1)
1.2.3 Nanostructured ZnO Layers
19(2)
1.2.4 Nanostructured NiO Layers
21(1)
1.2.5 Nanostructured Carbon Materials
22(3)
1.2.6 Other Nanostructured Layers
25(2)
1.3 Summary and Outlook
27(14)
References
27(14)
2 Dielectric Nanomaterials for Silicon Solar Cells
41(54)
Ingo Dirnstorfer
Thomas Mikolajick
2.1 Dielectric Nanomaterials in Today's and Future Silicon Solar Cells
42(4)
2.1.1 Epitaxial Si Foil-Based Solar Cell
43(1)
2.1.2 Heterojunction Solar Cell with Dielectric Front Side Layer
44(1)
2.1.3 Solar Cell with Symmetrical Passivation
44(1)
2.1.4 Solar Cell with Carrier Selective Contacts
45(1)
2.1.5 Up-Converter Solar Cell
45(1)
2.2 Theory of Surface Recombination and Surface Passivation
46(15)
2.2.1 Surface Recombination Model
46(1)
2.2.2 Dielectric Charges and Near Surface Recombination
47(4)
2.2.3 Surface Passivation
51(10)
2.3 Deposition Methods
61(7)
2.3.1 Plasma Enhanced Chemical Vapor Deposition
61(2)
2.3.2 Atomic Layer Deposition
63(2)
2.3.3 Alternative Deposition Methods
65(1)
2.3.4 Low-Thermal Budget Processing
65(3)
2.4 Dielectric Multi-oxide Nanolaminates
68(6)
2.4.1 Zero-Fixed-Charge Passivation Layers
68(2)
2.4.2 Carrier Selective Contacts
70(4)
2.5 Dielectric Materials and Light Management
74(7)
2.5.1 Dielectric Layers for Surface Reflection Control
74(2)
2.5.2 Concepts for Light Trapping
76(1)
2.5.3 Spectral Conversion of Light
77(4)
2.6 Conclusions and Outlook
81(14)
References
82(13)
3 Nanostructured Cathode Buffer Layers for Inverted Polymer Solar Cells
95(64)
Zhiqiang Liang
Guozhong Cao
3.1 Introduction
96(1)
3.2 Polymer Solar Cells
97(6)
3.2.1 Inverted PSCs
98(3)
3.2.2 Nanostructured ZnO Cathode Buffer Layers for Inverted PSCs
101(2)
3.3 Fabrication of Nanostructured ZnO Films for Inverted PSCs
103(8)
3.3.1 Sol-Gel Processing
103(4)
3.3.2 ZnO CBLs Derived from Pre-fabricated ZnO Nanoparticles
107(2)
3.3.3 Atomic Layer Deposition
109(2)
3.4 The Impacts of ZnO CBLs on the Performance of Inverted PSCs
111(6)
3.4.1 The Impacts of the Morphology of ZnO CBLs on the Performance of Inverted PSCs
111(4)
3.4.2 The Effects of the Thickness of ZnO CBLs on the Performance of Inverted PSCs
115(2)
3.5 Doping of ZnO CBLs in Inverted Polymer Solar Cells
117(5)
3.5.1 Metal Doped ZnO Nano-films
117(4)
3.5.2 Fullerene Derivatives Doped ZnO Nano-films
121(1)
3.6 One-Dimensional ZnO Nanostructures for Inverted PSCs
122(4)
3.7 Surface Modification of ZnO CBLs
126(11)
3.7.1 UV Illumination Treatment of ZnO CBLs
127(1)
3.7.2 Fullerene-Based Interlayer Modification of ZnO CBLs
128(3)
3.7.3 Non-fullerene Based Interlayer Modification of ZnO CBLs
131(6)
3.8 ZnO-Based Nanocomposites CBLs
137(7)
3.9 Conclusion and Outlook
144(15)
References
145(14)
4 Nanomaterials for Stretchable Energy Storage and Conversion Devices
159(34)
Keyu Xie
Bingqing Wei
4.1 Introduction
159(3)
4.2 Carbon Materials
162(11)
4.2.1 Carbon Nanotubes
162(5)
4.2.2 Graphene
167(3)
4.2.3 CNT/Graphene Hybrid
170(2)
4.2.4 Carbon Fiber
172(1)
4.2.5 Carbon Grease
173(1)
4.3 Conjugated Polymer
173(6)
4.4 Metal Oxides
179(2)
4.5 Lithium Metal Oxides
181(3)
4.6 Elemental and Compound Semiconductors
184(2)
4.7 Metals
186(1)
4.8 Summary and Outlook
187(6)
References
188(5)
5 Piezoelectric Nanomaterials for Energy Harvesting
193(22)
Kory Jenkins
Rusen Yang
5.1 Introduction to Piezoelectric Nanomaterials
193(1)
5.1.1 Piezoelectricity
194(1)
5.2 Properties and Synthesis of Piezoelectric Nanomaterials
194(8)
5.2.1 Zinc Oxide
195(2)
5.2.2 Molybdenum Disulfide
197(3)
5.2.3 Diphenylalanine (FF) Peptide
200(2)
5.3 Energy Harvesting with Piezoelectric Nanomaterials
202(8)
5.3.1 Energy Harvesting with Zinc Oxide
202(5)
5.3.2 Energy Harvesting with Molybdenum Disulfide
207(3)
5.4 Conclusions and Outlook
210(5)
References
211(4)
6 Discotic Liquid Crystals for Self-organizing Photovoltaics
215(38)
Hari Krishna Bisoyi
Quan Li
6.1 Introduction
216(6)
6.1.1 Organic Photovoltaic Solar Cells
216(2)
6.1.2 Discotic Liquid Crystals
218(4)
6.2 Discotic Liquid Crystals in Organic Photovoltaic Solar Cells
222(24)
6.2.1 Liquid Crystalline Porphyrins in OPV
223(2)
6.2.2 Liquid Crystalline Phthalocyanines in OPV
225(4)
6.2.3 Liquid Crystalline Hexabenzocoronenes in OPV
229(8)
6.2.4 Liquid Crystalline Perylenebisimides in OPV
237(1)
6.2.5 Liquid Crystalline Triphenylenes in OPV
238(5)
6.2.6 Liquid Crystalline Decacyclene in OPV
243(2)
6.2.7 Other Liquid Crystalline Discotic Compounds in OPV
245(1)
6.3 Conclusions and Outlook
246(7)
References
247(6)
7 Vertically-Aligned Carbon Nanotubes for Electrochemical Energy Conversion and Storage
253(18)
Feng Du
Quanbin Dai
Liming Dai
Qiuhong Zhang
Thomas Reitz
Levi Elston
7.1 Introduction
253(1)
7.2 VA-CNTs for Efficient Energy Conversion and Storage
254(2)
7.3 VA-CNTs for Energy Conversion
256(2)
7.4 VA-CNTs for Energy Storage
258(7)
7.5 Conclusions
265(6)
References
266(5)
8 Graphene-Based Electrochemical Microsupercapacitors for Miniaturized Energy Storage Applications
271(22)
Hao Yang
Wu Lu
8.1 Introduction
271(1)
8.2 Supercapacitors
272(7)
8.2.1 Electrode Materials
274(1)
8.2.2 Electrolytes
275(1)
8.2.3 Solid Electrolyte
276(1)
8.2.4 Performance Evaluation
277(2)
8.3 Interdigital Microsupercapacitors
279(3)
8.4 Graphene-Based Microsupercapacitors
282(6)
8.5 Conclusion and Outlooks
288(5)
References
288(5)
9 Incorporating Graphene into Fuel Cell Design
293(20)
Edward P. Randviir
Craig E. Banks
9.1 It's All Gone Graphene
294(1)
9.2 Barriers to Commercialisation of Graphene
295(2)
9.3 Fuel Cells
297(2)
9.4 Graphene Fuel Cells
299(10)
9.4.1 Pristine Graphene
299(3)
9.4.2 Laser-Induced Graphene
302(2)
9.4.3 Reduced Graphene Oxide
304(3)
9.4.4 N-Doped Graphene
307(2)
9.5 Conclusions and Outlook
309(4)
References
310(3)
10 Mesoporous Materials for Fuel Cells
313(58)
Jin Zhang
San Ping Jiang
10.1 Introduction
315(2)
10.2 Mesoporous Materials in SOFCs
317(1)
10.3 Mesoporous Polymer Based PEM
318(5)
10.3.1 Mesoporous Nafion Membrane
319(2)
10.3.2 Mesoporous Block Copolymers
321(2)
10.4 Sulfonated Mesoporous Silica Base PEMs
323(10)
10.4.1 Sulfonated Mesoporous Silica Fillers for Nafion Membrane
324(3)
10.4.2 Sulfonated Mesoporous Silica for Alternative Polymer
327(2)
10.4.3 Sulfonation of Mesoporous Silica
329(2)
10.4.4 Pore Structure and Acidity of Mesoporous Silica
331(2)
10.5 Non-sulfonated Mesoporous Silica for PEMs
333(7)
10.5.1 Imidazole
334(1)
10.5.2 Triazole
335(1)
10.5.3 Protic Ionic Liquids
336(1)
10.5.4 Phosphoric Acid
336(2)
10.5.5 Alternative Mesoporous Materials for PEM
338(2)
10.6 Mesoporous Silica Based Inorganic PEMs
340(11)
10.6.1 Synthesis of HPW/Meso-Silica
341(3)
10.6.2 Conductivity and Cell Performance of HPW/Meso-Silica Composite Membrane
344(5)
10.6.3 Proton Diffusion Mechanism in the HPW/Afeso-Silica
349(1)
10.6.4 HPW/Meso-Silica Membrane Fabrication
350(1)
10.7 Mesoporous Materials for the Electrode Materials in PEMFC
351(6)
10.7.1 Mesoporous Carbon Supported Catalyst
352(3)
10.7.2 Mesoporous Metal Oxide Based Catalyst
355(2)
10.8 Conclusions
357(14)
References
358(13)
11 Thermoelectric Nanocomposites for Thermal Energy Conversion
371(74)
Yucheng Lan
Zhifeng Ren
11.1 Introduction
371(3)
11.2 High-Energy Ball-Milling and Produced Thermoelectric Nanoparticles
374(8)
11.2.1 Ball-Mills
374(3)
11.2.2 Ball-Milled Thermoelectric Nanoparticles
377(5)
11.3 Bottom-Up Techniques to Produce Thermoelectric Nanocomposites
382(10)
11.3.1 Cold Pressing
382(1)
11.3.2 Hot-Pressing
383(4)
11.3.3 Spark Plasma Sintering
387(2)
11.3.4 Other Bottom-Up Methods
389(1)
11.3.5 Advantages and Problems of Current Bottom-Up Techniques
390(2)
11.4 Thermoelectric Nanocomposites with Enhanced ZT
392(31)
11.4.1 Bi2Te3 Nanocomposites
392(9)
11.4.2 SiGe Nanocomposites
401(9)
11.4.3 PbTe Nanocomposites
410(3)
11.4.4 PbSe Nanocomposites
413(2)
11.4.5 Skutterudite Nanocomposites
415(4)
11.4.6 MgAgSb Nanocomposites
419(2)
11.4.7 YbAgCu4 Nanocomposites
421(1)
11.4.8 Other Kinds of Bottom-Up-ed Nanocomposites
422(1)
11.5 Thermoelectric Devices of Nanocomposites
423(7)
11.5.1 Manufacturing of Thermoelectric Devices
424(1)
11.5.2 Thermoelectric Devices and Efficiency
425(4)
11.5.3 Engineering Efficiency of Thermoelectric Devices
429(1)
11.6 Conclusions and Outlooks
430(15)
References
431(14)
12 Nanomaterials for Hydrogen Generation from Solar Water Splitting
445(26)
Zhenhuan Zhao
Zhiming Wang
Jiming Bao
12.1 Background and Introduction
445(1)
12.2 Mechanism and Material Requirements for Solar Water Splitting
446(2)
12.2.1 Mechanism of Solar Water Splitting
446(1)
12.2.2 Material Requirements for Overall Solar Water Splitting
446(2)
12.3 Nanomaterials for Hydrogen Generation from Solar Water Splitting
448(16)
12.3.1 Metal Oxides for Hydrogen Generation from Solar Water Splitting
448(7)
12.3.2 Metal Chalcogenide and Oxysulfide Nanomaterials
455(1)
12.3.3 Metal Nitride and Oxynitride Nanomaterials
456(1)
12.3.4 Other Newly Developed Nanomaterials
457(7)
12.4 Conclusions and Outlook
464(7)
References
465(6)
13 Nanomaterials for Rechargeable Lithium Batteries
471(42)
Sebastien Martinet
13.1 Introduction
471(3)
13.2 Why Nanomaterials for Batteries?
474(1)
13.3 Positive Electrode Materials
475(14)
13.3.1 Commercial Lamellar Oxides
476(3)
13.3.2 Spinel Oxides
479(3)
13.3.3 Polyanionic Compounds
482(7)
13.4 Negative Electrode Materials
489(16)
13.4.1 Carbonaceous Materials
490(1)
13.4.2 Titanium Oxides for High Voltage Anodes
491(5)
13.4.3 Alloy Negative Electrodes
496(7)
13.4.4 Conversion Materials
503(2)
13.5 Summary and Outlook
505(8)
References
506(7)
14 Self-organized Chiral Liquid Crystalline Nanostructures for Energy-Saving Devices
513(46)
Zhigang Zheng
Quan Li
14.1 Introduction
514(1)
14.2 Bistability in Self-organized Chiral Liquid Crystals
515(18)
14.2.1 Bistability Enabled by Device Optimizations
517(7)
14.2.2 Bistability Enabled by Novel Chiral Liquid Crystals
524(6)
14.2.3 Light Driven Bistable Chiral Liquid Crystal Devices
530(3)
14.3 Solar Energy Related Applications of Chiral Liquid Crystal Bistability
533(8)
14.3.1 Adaptive Infrared Reflective Smart Window
534(5)
14.3.2 Photovoltaic Driven LCD and Other LC Modulated Solar Energy Devices
539(2)
14.4 Light Driven Chiral Liquid Crystal Photonic Devices with Wide Tuning Range
541(12)
14.4.1 Light Tunable CLC Bragg Reflector
542(4)
14.4.2 Light Manipulated Micro-patterned and Micro-fluidic Photonic Devices
546(7)
14.5 Conclusions and Outlook
553(6)
References
554(5)
15 Nanomaterials for the Production of Biofuels
559(24)
Sudipta De
Rafael Luque
15.1 Introduction
559(3)
15.1.1 Types of Biofuels
560(1)
15.1.2 Chemistries in Biofuel Production
560(2)
15.2 Fuels Derived from Furfural and 5-Hydroxymethylfurfural
562(4)
15.3 Long Chain Hydrocarbons via C--C Coupling
566(3)
15.4 Levulinic Acid-Based Fuels
569(3)
15.4.1 Hydrogenation of Levulinic Acid
570(1)
15.4.2 Upgrading of Levulinic Acid into Hydrocarbon Fuels
570(2)
15.5 Fuels from Sugar Alcohols
572(4)
15.6 Lignin-Based Fuels
576(2)
15.7 Conclusions and Outlook
578(5)
References
579(4)
Index 583
Quan Li, Ph.D., is Director of Organic Synthesis and Advanced Materials Laboratory at the Liquid Crystal Institute of Kent State University, where he is also Adjunct Professor in the Chemical Physics Interdisciplinary Program. He has directed research projects funded by US Air Force Research Laboratory, US Air Force Office of Scientific Research, US Army Research Office, US Department of Defense Multidisciplinary University Research Initiative, US National Science Foundation, US Department of Energy, US National Aeronautics and Space Administration, Ohio Third Frontier, Samsung Electronics etc. He received his Ph.D. in Organic Chemistry from Chinese Academy of Sciences (CAS) in Shanghai, where he was promoted to the youngest Full Professor of Organic Chemistry and Medicinal Chemistry in February of 1998. He was a recipient of CAS One-Hundred Talents Award (BeiRenJiHua) in 1999. He was Alexander von Humboldt Fellow in Germany. He has also won Kent State University Outstanding Research and Scholarship Award. Li has edited three Wiley books and three Springer books in the past five years, and is the invited author of the entry Liquid Crystals for Kirk-Othmer Encyclopedia and Gold Nanorods for  Encyclopedia of Surface and Colloid Science.