Atnaujinkite slapukų nuostatas

El. knyga: Nanostructured Materials and Their Applications

  • Formatas: PDF+DRM
  • Serija: NanoScience and Technology
  • Išleidimo metai: 13-Jan-2012
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Kalba: eng
  • ISBN-13: 9783642222276
  • Formatas: PDF+DRM
  • Serija: NanoScience and Technology
  • Išleidimo metai: 13-Jan-2012
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Kalba: eng
  • ISBN-13: 9783642222276

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book gives an overview of nanostructures and nanomaterials applied in the fields of energy and organic electronics. It combines the knowledge from advanced deposition and processing methods of nanomaterials such as laser-based growth and nanopatterning and state-of-the-art characterization techniques with special emphasis on the optical, electrical, morphological, surface and mechanical properties. Furthermore it contains theoretical and experimental aspects for different types of nanomaterials such as nanoparticles, nanotubes and thin films for organic electronics applications. The international group of authors specifically chosen for their distinguished expertise belong to the academic and industrial world in order to provide a broader perspective. The authors take an interdisciplinary approach of physics, chemistry, engineering, materials science and nanotechnology. It appeals to researchers and graduate students.



This book applies nanostructures and nanomaterials to energy and organic electronics, offering advanced deposition and processing methods and theoretical and experimental aspects for nanoparticles, nanotubes and thin films for organic electronics applications.
1 Nanotechnology: Principles and Applications
1(22)
S. Logothetidis
1.1 Introduction
2(1)
1.2 Methods and Principles of Nanotechnology
3(7)
1.2.1 What Makes Nanostructures Unique
3(2)
1.2.2 Size Dependence
5(1)
1.2.3 Metal NPs
6(1)
1.2.4 Quantum Dots
6(1)
1.2.5 Nanotechnology Imitates Nature
7(3)
1.3 From Microelectronics to Nanoelectronics and Molecular Electronics
10(2)
1.4 Nano in Energy and Clean Energy
12(3)
1.5 Nanotechnology Tools: Nanometrology
15(3)
1.6 Future Perspectives
18(1)
1.7 Summary
19(4)
References
20(3)
2 Carbon Nanomaterials: Synthesis, Properties and Applications
23(24)
Kyriakos Porlyrakis
Jamie H. Warner
2.1 Introduction
23(1)
2.2 Fullerenes and Their Derivatives
24(12)
2.2.1 Synthesis of Endohedral Fullerenes
25(1)
2.2.2 Endohedral Metallofullerenes
26(1)
2.2.3 Endohedral Nitrogen Fullerenes
27(1)
2.2.4 Molecular Synthesis of Endohedral Fullerenes
28(1)
2.2.5 Purification of Endohedral Fullerenes
29(1)
2.2.6 Properties and Applications
29(3)
2.2.7 Chemistry of Endohedral Fullerenes
32(3)
2.2.8 One-Dimensional, Two-Dimensional Arrays and Beyond
35(1)
2.3 Graphene
36(3)
2.3.1 Synthesis
36(2)
2.3.2 Properties and Applications
38(1)
2.4 Carbon Nanotubes
39(3)
2.4.1 Synthesis
40(2)
2.4.2 Applications
42(1)
2.5 Summary
42(5)
References
43(4)
3 Carbon Nanotubes: From Symmetry to Applications
47(12)
M. Damnjanovic
3.1 Introduction: Symmetry of Nanotubes
47(4)
3.1.1 Configuration of Single-Wall Nanotubes
48(1)
3.1.2 Symmetry of Single-Wall Nanotubes
48(2)
3.1.3 Double-Wall Nanotubes
50(1)
3.2 Energy Bands
51(3)
3.2.1 Electronic Bands
51(2)
3.2.2 Phonons
53(1)
3.3 Interaction Between Walls
54(3)
3.3.1 Potential Produced by Nanotube
54(2)
3.3.2 Interaction
56(1)
3.4 Summary
57(2)
References
57(2)
4 Laser-Based Growth of Nanostructured Thin Films
59(26)
P. Patsalas
4.1 Introduction
59(1)
4.2 Instrumentation and Principles of Pulsed Laser Deposition
60(7)
4.3 Examples and Applications
67(18)
4.3.1 External Control of Ablated Species and Application to Ta-C Films [ 29]
67(4)
4.3.2 Self-Assembled Nanoparticles into Dielectric-Matrix Films and Superlattices [ 52,54]
71(5)
4.3.3 Control of the Atomic Structure and Nanostructure of Intermetallic and Glassy Films [ 147]
76(2)
References
78(7)
5 High Efficiency Multijunction Solar Cells with Finely-Tuned Quantum Wells
85(20)
Argyrios C. Varonides
5.1 What is a Solar Cell?
86(1)
5.2 Photo-Currents
87(1)
5.3 Solution of the Diffusion Equation: n-Region
88(1)
5.4 Solution of the Diffusion Equation: P-Region
89(1)
5.5 Total Electron and Hole Currents
90(1)
5.6 P-I-N Geometries of Solar Cells
91(1)
5.7 A Proposed Device
92(2)
5.8 The Concept
94(1)
5.9 Current Research Objectives: A Proposed Guideline
95(6)
5.10 To Probe Further
101(4)
References
102(3)
6 Thin Film Deposition and Nanoscale Characterisation Techniques
105(26)
Spyridon Kassavetis
Christoforos Gravalidis
Stergios Logothetidis
6.1 Introduction
105(1)
6.2 Methods and Results
106(21)
6.2.1 Thin Film Deposition Techniques
106(1)
6.2.2 Physical Vapor Deposition: Magnetron Sputtering
106(2)
6.2.3 Nanoscale Characterization of Sputtered Thin Films
108(17)
6.2.4 Wet Deposition Techniques of Thin Films
125(2)
6.3 Summary: Conclusion
127(4)
References
127(4)
7 Implementation of Optical Characterization for Flexible Organic Electronics Applications
131(24)
A. Laskarakis
S. Logothetidis
7.1 Introduction
132(1)
7.2 Optical Characterization of Materials
133(4)
7.3 Flexible Organic Electronic Devices
137(2)
7.4 Results and Discussion
139(13)
7.4.1 Flexible Polymeric Substrates
139(5)
7.4.2 Barrier Layers for Encapsulation of Devices
144(3)
7.4.3 Transparent Electrodes (Inorganic, Organic)
147(5)
7.5 Conclusions and Perspectives
152(3)
References
153(2)
8 Introduction to Organic Vapor Phase Deposition (OVPD®) Technology for Organic (Opto-)electronics
155(16)
Dietmar Keiper
Nico Meyer
Michael Heuken
8.1 Introduction
155(2)
8.2 OVPD® Basics and Industrial Concept
157(1)
8.3 OVPD® Deposition of Organic Thin Films and Devices
158(10)
8.3.1 Single Film Deposition
158(3)
8.3.2 Organic Film Morphology
161(2)
8.3.3 OLED Stack Designs Fabricated by OVPD® - Cross-Fading
163(5)
8.4 Conclusion
168(3)
References
169(2)
9 Computational Studies on Organic Electronic Materials
171(20)
Leonidas Tsetseris
9.1 Introduction
171(2)
9.2 Computional Methods
173(11)
9.2.1 A Brief Overview
173(1)
9.2.2 First-Principles Methods
174(2)
9.2.3 First-Principles Methods: Limitations and Extensions
176(2)
9.2.4 Carrier Hopping Mechanisms
178(4)
9.2.5 Monte Carlo Simulations
182(2)
9.3 Results and Findings
184(5)
9.4 Summary and Outlook
189(2)
References
190(1)
10 Self-Assembly of Colloidal Nanoparticles on Surfaces: Towards Surface Nanopatterning
191(22)
Vasilcios Koutsos
John Walker
Emmanouil Glynos
10.1 Introduction and Theoretical Background
191(8)
10.1.1 Colloidal Particle Interactions
193(1)
10.1.2 van der Waals Forces
193(1)
10.1.3 Electrostatic Interactions
194(3)
10.1.4 DLVO Theory
197(1)
10.1.5 Electrolyte Concentration Control over Interactions
198(1)
10.1.6 Steric Interactions
199(1)
10.2 Experimental
199(2)
10.2.1 Atomic Force Microscopy
199(2)
10.3 Drying and Immersion Capillary Forces: The Emergence of Order
201(4)
10.3.1 Crystalline Monolayers of Colloidal Silica on Mica
204(1)
10.4 Dewetting Effects: Self-Organisation
205(4)
10.4.1 Dewetting Structures of Colloidal Magnetite Nanoparticles on Mica
206(3)
10.4.2 Adsorption and Self-Assembly of Soft Colloid Nanoparticles on Mica
209(1)
10.5 Conclusions
209(4)
References
210(3)
Index 213