Preface |
|
xiii | |
|
Part I Introduction and Background |
|
|
|
1 Introduction and Literature Review |
|
|
3 | (64) |
|
|
3 | (2) |
|
|
5 | (62) |
|
1.2.1 Crystal Structure of TiO2 |
|
|
7 | (1) |
|
|
8 | (2) |
|
|
10 | (2) |
|
|
12 | (2) |
|
1.2.2 TiO2 Band Gap, Doping, and Modifying |
|
|
14 | (2) |
|
1.2.2.1 Ion-implantation method |
|
|
16 | (1) |
|
1.2.2.2 Sol--gel doping and other methods |
|
|
16 | (2) |
|
1.2.2.3 Mixed titania phases: Heterojunction (heterostructure) |
|
|
18 | (1) |
|
1.2.3 Kinetics of TiO2 Phase Transformation |
|
|
19 | (2) |
|
|
21 | (1) |
|
|
21 | (1) |
|
|
22 | (1) |
|
|
22 | (1) |
|
1.2.3.5 Impurities, presence of foreign elements, or doping |
|
|
23 | (2) |
|
|
25 | (1) |
|
1.2.3.7 Particle/grain size |
|
|
26 | (1) |
|
|
27 | (1) |
|
1.2.4 Nanostructured TiO2 |
|
|
27 | (1) |
|
1.2.4.1 Zero-dimensional nanostructures |
|
|
28 | (1) |
|
1.2.4.2 One-dimensional nanostructures |
|
|
28 | (4) |
|
1.2.4.3 Two-dimensional nanostructures |
|
|
32 | (1) |
|
1.2.4.4 Three-dimensional nanostructures |
|
|
32 | (1) |
|
1.2.5 Synthesis Methods of Nanostructured TiO2 |
|
|
33 | (1) |
|
|
33 | (1) |
|
1.2.5.2 Hydrothermal method |
|
|
33 | (1) |
|
|
34 | (1) |
|
1.2.5.4 Chemical vapor deposition |
|
|
35 | (1) |
|
1.2.5.5 Layer-by-layer method |
|
|
35 | (2) |
|
1.2.5.6 Anodization method |
|
|
37 | (2) |
|
1.2.5.7 Electrospinning method |
|
|
39 | (7) |
|
|
46 | (21) |
|
|
|
2 Material Synthesis and Methodologies |
|
|
67 | (38) |
|
2.1 Synthesis of TiO2 Thin Films |
|
|
67 | (1) |
|
2.2 Synthesis of Electrospun TiO2 Nanofibers |
|
|
68 | (1) |
|
2.3 Synthesis of Anodized TiO2 Nanotubes |
|
|
69 | (1) |
|
2.4 Synthesis of ID TiO2 Nanostructures |
|
|
69 | (7) |
|
2.4.1 Hydrothermal: Seeded-Growth Reaction |
|
|
70 | (1) |
|
2.4.2 Templated Synthesis: Sol--Gel Deposition, Electrodeposition, Atomic Layer Deposition |
|
|
70 | (2) |
|
2.4.3 Electrochemical Anodization |
|
|
72 | (4) |
|
|
76 | (1) |
|
2.5 Physical Properties of Anodic TiO2 Nanotube Layers Annealed at Different Temperatures |
|
|
76 | (6) |
|
2.5.1 Morphological Properties |
|
|
76 | (2) |
|
2.5.2 Structural Properties |
|
|
78 | (1) |
|
|
79 | (1) |
|
2.5.4 Vibrational Properties |
|
|
79 | (3) |
|
2.6 Modification and Functionalization of Anodic TiO2 Nanotube Layers |
|
|
82 | (5) |
|
|
82 | (1) |
|
2.6.2 Reduction and Self-Doping "Black TiO2" |
|
|
83 | (1) |
|
2.6.3 Surface Modification |
|
|
84 | (1) |
|
2.6.4 Incorporation of Metals and Semiconductors |
|
|
85 | (2) |
|
2.7 Synthesis of Doped TiO2 Nanostructures |
|
|
87 | (18) |
|
3 Characterization Techniques |
|
|
105 | (10) |
|
3.1 Scanning Electron Microscopy |
|
|
105 | (1) |
|
3.2 High-Resolution Transmission Electron Microscopy |
|
|
106 | (1) |
|
3.3 X-Ray Photoelectron Spectroscopy |
|
|
106 | (1) |
|
3.4 Electron Backscatter Diffraction |
|
|
106 | (1) |
|
3.5 In Situ High-Temperature X-Ray and Synchrotron Radiation Diffraction |
|
|
107 | (2) |
|
3.6 Analysis of Absolute Phase Compositions |
|
|
109 | (1) |
|
3.7 Estimation of Activation Energies |
|
|
109 | (1) |
|
3.8 Estimation of Crystallite Size and Strain |
|
|
110 | (5) |
|
Part III Materials Characterization |
|
|
|
4 In Situ Isothermal High-Temperature Diffraction Studies on the Crystallization, Phase Transformation, and Activation Energies in Anodized Titania Nanotubes |
|
|
115 | (12) |
|
|
116 | (1) |
|
4.2 Results and Discussion |
|
|
117 | (5) |
|
4.2.1 Microstructural Imaging |
|
|
117 | (2) |
|
4.2.2 Crystallization Kinetics |
|
|
119 | (2) |
|
4.2.3 Activation Energies |
|
|
121 | (1) |
|
|
122 | (5) |
|
5 Effect of Calcination on Band Gap for Electrospun Titania Nanofibers Heated in Air-Argon Mixtures |
|
|
127 | (18) |
|
|
128 | (2) |
|
5.2 Results and Discussion |
|
|
130 | (9) |
|
5.2.1 Microstructure Imaging |
|
|
130 | (2) |
|
5.2.2 Influence of Calcining Atmosphere |
|
|
132 | (1) |
|
|
133 | (1) |
|
5.2.4 UV--Visible Spectral Analysis |
|
|
134 | (2) |
|
5.2.5 Influence of Calcining Atmosphere on Band-Gap Structure |
|
|
136 | (3) |
|
|
139 | (6) |
|
6 Characterization and Optimization of Electrospun TiO2/PVP Nanofibers Using Taguchi Design of Experiment Method |
|
|
145 | (20) |
|
|
146 | (2) |
|
6.2 Theory and Fundamentals |
|
|
148 | (3) |
|
|
148 | (1) |
|
6.2.2 Analysis of Variance |
|
|
149 | (1) |
|
6.2.3 Total Variation (ST) |
|
|
150 | (1) |
|
6.2.4 Total Variance of Each Factor (Si) |
|
|
150 | (1) |
|
6.2.5 Percentage Contribution (%) |
|
|
151 | (1) |
|
6.2.6 Signal-to-Noise Ratio (S/N) of Electrospun TiO2 Nanofiber Diameter |
|
|
151 | (1) |
|
6.3 Results and Discussion |
|
|
151 | (10) |
|
6.3.1 Nanofiber Morphology and Diameter |
|
|
151 | (5) |
|
6.3.2 Analysis of Variance (ANOVA) |
|
|
156 | (1) |
|
6.3.3 Optimum Combination of Factors |
|
|
157 | (2) |
|
6.3.4 Confirmation Experiment to Optimum Conditions |
|
|
159 | (2) |
|
|
161 | (4) |
|
7 Effect of Pressure on TiO2 Crystallization Kinetics Using In Situ Sealed Capillary High-Temperature Synchrotron Radiation Diffraction |
|
|
165 | (16) |
|
|
166 | (1) |
|
7.2 Results and Discussion |
|
|
167 | (9) |
|
7.2.1 Microstructural Imaging |
|
|
167 | (2) |
|
7.2.2 SRD Patterns for In Situ Heating of Material Contained in Sealed Capillary |
|
|
169 | (2) |
|
7.2.3 Use of Ex Situ XRD at Atmospheric Pressure to Determine the Influence of Capillary Pressure in SRD Experiment |
|
|
171 | (4) |
|
7.2.4 Crystallization Kinetics Modelling |
|
|
175 | (1) |
|
|
176 | (5) |
|
8 Characterization of Chemical-Bath-Deposited TiO2 Thin Films |
|
|
181 | (8) |
|
|
181 | (1) |
|
8.2 Results and Discussion |
|
|
182 | (5) |
|
|
182 | (2) |
|
8.2.2 Microstructure Analysis |
|
|
184 | (2) |
|
8.2.3 Electrical Resistivity |
|
|
186 | (1) |
|
|
187 | (2) |
|
9 Influence of Electrolyte and Temperature on Anodic Nanotubes |
|
|
189 | (12) |
|
|
189 | (1) |
|
9.2 Results and Discussion |
|
|
190 | (6) |
|
9.2.1 Influence of Electrolyte Composition on TiO2 Nanotubes Formation |
|
|
191 | (1) |
|
9.2.2 Temperature Dependence on Anodic Synthesis of TiO2 Nanotubes |
|
|
192 | (2) |
|
9.2.3 Optical Properties of Anodic TiO2 Nanotubes |
|
|
194 | (2) |
|
|
196 | (5) |
|
Part IV Materials Properties and Applications |
|
|
|
10 Phase Transformations and Crystallization Kinetics of Electrospun TiO2 Nanofibers in Air and Argon Atmospheres |
|
|
201 | (16) |
|
|
201 | (3) |
|
10.2 Results and Discussion |
|
|
204 | (10) |
|
10.2.1 Microstructures of Electrospun TiO2 Nanofibers |
|
|
204 | (1) |
|
10.2.2 Effect of Environmental Atmosphere on Phase Transitions during Thermal Annealing |
|
|
205 | (9) |
|
|
214 | (3) |
|
11 Effect of Vanadium-Ion Implantation on the Crystallization Kinetics and Phase Transformation of Electrospun TiO2 Nanofibers |
|
|
217 | (22) |
|
|
218 | (2) |
|
11.2 Results and Discussion |
|
|
220 | (14) |
|
11.2.1 Microstructures of Electrospun TiO2 Nanofibers |
|
|
220 | (2) |
|
11.2.2 HRTEM Imaging of Calcined TiO2 Nanofibers |
|
|
222 | (2) |
|
11.2.3 X-ray Photoelectron Spectroscopy |
|
|
224 | (2) |
|
11.2.4 Effect of Ion Implantation on Phase Transitions |
|
|
226 | (5) |
|
11.2.5 Crystallization Kinetics Modelling |
|
|
231 | (2) |
|
11.2.6 Microstructure Development |
|
|
233 | (1) |
|
|
234 | (5) |
|
12 A Comparative Study on Crystallization Behavior, Phase Stability, and Binding Energy in Pure and Cr-Doped TiO2 Nanotubes |
|
|
239 | (18) |
|
|
240 | (1) |
|
12.2 Results and Discussion |
|
|
241 | (11) |
|
12.2.1 Crystallization Behavior |
|
|
241 | (6) |
|
12.2.2 Microstructures and Formation Mechanisms of Nanostructured TiO2 |
|
|
247 | (3) |
|
12.2.3 Composition Depth Profiles and Binding Energies |
|
|
250 | (2) |
|
|
252 | (5) |
|
13 Effect of Indium-Ion Implantation on Crystallization Kinetics and Phase Transformation of Anodized Titania Nanotubes |
|
|
257 | (16) |
|
|
258 | (1) |
|
13.2 Results and Discussion |
|
|
259 | (8) |
|
13.2.1 Microstructural Imaging |
|
|
259 | (2) |
|
13.2.2 Crystallization Behavior |
|
|
261 | (3) |
|
13.2.3 Influence of In-Ion Implantation on Lattice Parameters |
|
|
264 | (3) |
|
|
267 | (6) |
|
14 Ni Nanowires Grown in Anodic TiO2 Nanotube Arrays as Diluted Magnetic Semiconductor Nanocomposites |
|
|
273 | (12) |
|
|
274 | (2) |
|
14.2 Results and Discussion |
|
|
276 | (5) |
|
|
281 | (4) |
|
15 Applications of TiO2 Nanostructures |
|
|
285 | (22) |
|
15.1 Photocatalytic Applications |
|
|
285 | (6) |
|
15.1.1 Antifogging and Self-Cleaning |
|
|
288 | (2) |
|
15.1.2 Photocatalysts for Water Treatment and Air Purification |
|
|
290 | (1) |
|
15.1.3 TiO2 Photobioreactor |
|
|
291 | (1) |
|
15.2 Photovoltaic Applications |
|
|
291 | (4) |
|
|
292 | (1) |
|
15.2.2 Photoelectrochemical Cells |
|
|
293 | (1) |
|
15.2.3 Dye-Sensitized Solar Cells |
|
|
294 | (1) |
|
15.3 Sensing Applications |
|
|
295 | (1) |
|
|
296 | (1) |
|
15.5 Drug Delivery and Bioapplications |
|
|
296 | (11) |
|
|
|
16 Summary and Conclusions |
|
|
307 | (4) |
|
|
307 | (1) |
|
|
308 | (3) |
Index |
|
311 | |