Atnaujinkite slapukų nuostatas

El. knyga: Nanotechnology in Drug Delivery: Fundamentals, Design, and Applications [Taylor & Francis e-book]

(School of Medical and Allied Sciences, GD Goenka University, Gurgaon, Haryana, India)
  • Formatas: 390 pages, 7 Illustrations, color; 21 Illustrations, black and white
  • Išleidimo metai: 08-Jul-2016
  • Leidėjas: Apple Academic Press Inc.
  • ISBN-13: 9781315366296
  • Taylor & Francis e-book
  • Kaina: 156,95 €*
  • * this price gives unlimited concurrent access for unlimited time
  • Standartinė kaina: 224,21 €
  • Sutaupote 30%
  • Formatas: 390 pages, 7 Illustrations, color; 21 Illustrations, black and white
  • Išleidimo metai: 08-Jul-2016
  • Leidėjas: Apple Academic Press Inc.
  • ISBN-13: 9781315366296

This important new book provides the fundamental understanding of the peptide and protein drug delivery systems with a special focus on their nanotechnology applications. Addressing an increasing interest in peptide and protein drug delivery systems in both academic and industrial circles worldwide, this book fills the need for a comprehensive review and assessment of conventional and nonconventional routes of administration.

Abstract 7(1)
1.1 Introduction 7(2)
1.2 Structures of Proteins 9(3)
1.2.1 Levels of Protein Structure
11(1)
1.3 Chemical Synthesis of Protein and Peptides 12(10)
1.3.1 Peptide Synthesis
13(5)
1.3.1.1 Solid Phase Peptide Synthesis
17(1)
1.3.2 Protein Synthesis by Peptide Ligation
18(1)
1.3.3 Peptide Ligation with Sulfur
19(1)
1.3.3.1 Prior Thiol Capture
19(1)
1.3.4 Peptide Ligation with Selenium
20(1)
1.3.5 General Strategies for Peptide Ligation
21(1)
1.4 Instability Problems Associated with Proteins and Peptides 22(33)
1.4.1 Molecular Stability (Bio) Thermodynamics
30(2)
1.4.2 Thermodynamic Stability
32(1)
1.4.3 Kinetic Stability
33(1)
1.4.4 Structural and Functional Stabilization of Monomeric and Multimeric Entities
34(21)
1.4.1.1 Stabilization of Protein Entities via Engineering at the Level of the Microenvironment
36(10)
1.4.1.1.1 Stabilization via Physical Containment
37(2)
1.4.1.1.2 Stabilization via Physical Adsorption onto Macroscopic Supports
39(1)
1.4.1.1.3 Stabilization via Chemical Bonding onto Highly Activated Supports
40(1)
1.4.1.1.4 Multipoint Covalent Immobilization
41(2)
1.4.1.1.5 Co-Immobilization with Polycationic Moieties
43(1)
1.4.1.1.6 Further Inter-Subunit Crosslinking with Polyfunctional Hydrophilic Macromolecules
44(2)
1.4.1.2 Stabilization of Protein Entities via Engineering at the Level of the Macroenvironment
46(9)
1.4.1.2.1 Medium Engineering
47(8)
1.5 General Stability Issues 55(6)
1.5.1 Physical Instability
55(3)
1.5.1.1 Denaturation
56(1)
1.5.1.2 Adsorption
57(1)
1.5.1.3 Aggregation and Precipitation
58(1)
1.5.2 Chemical Instability
58(4)
1.5.2.1 Deamidation
59(1)
1.5.2.2 Oxidation and Reduction
59(1)
1.5.2.3 Proteolysis
60(1)
1.5.2.4 Disulfide Exchange
60(1)
1.5.2.5 Racemization
61(1)
1.5.2.6 β-Elimination
61(1)
1.6 Factors Affecting Delivery of Protein-Based Drugs 61(1)
1.7 Physicochemical Properties of Peptides and Proteins 62(1)
1.7.1 Solubility and Partition Coefficient
62(1)
1.7.2 Aggregation, Self Association and Hydrogen Bonding
62(1)
1.8 Barrier to Peptide and Protein Delivery 63(11)
1.8.1 Enzymatic Barrier
63(1)
1.8.2 Intestinal Epithelial Barrier
63(4)
1.8.2.1 Passive and Carrier Mediated Transport
64(1)
1.8.2.2 Endocytosis and Transcytosis
64(3)
1.8.2.2.1 Fluid-Phase Type (Non Specific Endocytosis, Pinocytosis)
64(1)
1.8.2.2.2 Adsorptive or Receptor-Mediated Type (Specific Endocytosis)
64(1)
1.8.2.2.3 Transcytosis
65(2)
1.8.2.3 Paracellular Movement
67(1)
1.8.3 Capillary Endothelial Barrier
67(3)
1.8.3.1 Mechanisms of Solute Transit
68(6)
1.8.3.1.1 Passive, Non-Facilitated
68(1)
1.8.3.1.2 Carrier-Mediated
69(1)
1.8.3.1.3 Receptor-Mediated
69(1)
1.8.3 Blood Brain Barrier (BBB)
70(4)
1.9 Delivery of Protein and Peptide Drugs 74(86)
1.9.1 Parenteral Systemic Delivery
74(18)
1.9.1.1 Biomedical Applications
74(2)
1.9.1.2 Parenteral Drug Delivery Systems
76(14)
1.9.1.2.1 Particulates
76(7)
1.9.1.2.2 Soluble Carriers (Macromolecules)
83(2)
1.9.1.2.3 Others
85(5)
1.9.1.3 Pharmaceutical Approaches Related to Systemic Delivery of Protein and Peptide Drugs
90(2)
1.9.2 Non-Parenteral Systemic Delivery
92(56)
1.9.2.1 Oral Route [ 160]
92(33)
1.9.2.1.1 Strategies for Oral Delivery
96(1)
1.9.2.1.2 Nobex Technology
97(1)
1.9.2.1.3 Oral Delivery of Insulin
97(1)
1.9.2.1.4 Potential Problem Associated with Oral Protein Delivery
98(1)
1.9.2.1.5 Prodrug Approach
98(1)
1.9.2.1.6 Modifications by Chemical Synthesis of Prodrugs and Analogs
99(4)
1.9.2.1.7 Site-Specific Delivery
103(4)
1.9.2.1.8 Use of Enzyme Inhibitors
107(1)
1.9.2.1.9 Use of Absorption Enhancers
108(4)
1.9.2.1.10 Formulation Vehicles
112(3)
1.9.2.1.11 Dosage Form Modifications
115(6)
1.9.2.1.12 Drug Delivery via the Mucous Membranes of the Oral Cavity
121(2)
1.9.2.1.13 Emerging Trends in Oral Delivery of Peptide and Protein Drugs
123(1)
1.9.2.1.14 Oral Delivery of Peptide Drugs: Barriers and Developments
123(1)
1.9.2.1.15 Protein Drug Oral Delivery: The Recent Progress
124(1)
1.9.2.2 Nasal Route [ 161]
125(6)
1.9.2.2.1 Nasal Delivery of Proteins
127(1)
1.9.2.2.2 Advantages of Nasal Route
128(1)
1.9.2.2.3 Mechanism to Facilitate Nasal Peptide and Protein Absorption
128(3)
1.9.2.3 Buccal Route
131(4)
1.9.2.3.1 Various Adhesive Dosage Forms
133(1)
1.9.2.3.2 Factors and Strategies for Improving Buccal Absorption of Peptides
134(1)
1.9.2.4 Ocular Route
135(1)
1.9.2.5 Rectal Route
136(1)
1.9.2.6 Adjuvants to Enhance the Absorption
137(2)
1.9.2.7 Importance of Lymphatic Uptake
139(1)
1.9.2.8 Transdermal Route
140(5)
1.9.2.8.1 Approaches for Transdermal Delivery
142(3)
1.9.2.9 Pulmonary Route
145(3)
1.9.3 Paracellular Delivery of Peptides
148(1)
1.9.4 Lymphatic Transportation of Proteins
149(3)
1.9.4.1 Colorectal Transport
152(1)
1.9.4.2 Pulmonary Transport
152(1)
1.9.5 Site-Specific Protein Modification (Protein Engineering)
152(4)
1.9.5.1 Enzyme-Peg Conjugates
153(1)
1.9.5.2 Protein Glycosylation
154(1)
1.9.5.2.1 Expression Cell Processing
155(1)
1.9.5.3 Modification of Proteases into Peptide Ligases
155(1)
1.9.5.4 Production of Site Specific Nucleases
155(1)
1.9.5.5 Production of Artificial Semisynthetic Oxidoreductase (Flavo-Enzymes)
156(1)
1.9.7 Microencapsulation Of Protein Drugs For Drug Delivery: Strategy, Preparation, and Applications
156(4)
1.10 Toxicity Profile Characterization 160(2)
1.10.1 Classes of Toxicity of Proteins and Peptides SU
160(9)
1.10.1.1 Exuberant Pharmacologic Responses BOH
160(1)
1.10.1.2 Generic Toxicity
160(2)
1.10.1.3 Idiopathic Toxicity
162(1)
1.11 Pegylation and its Delivery Aspects 162(1)
1.12 Novel Delivery Technologies 162(1)
1.13 Recent Progress in Delivery of Protein and Peptide by Noninvasive Routes 163(1)
1.14 Commercial Challenges of Protein Drug Delivery 164(1)
1.15 Alternative Delivery Systems for Peptides and Proteins as Drugs 164(1)
1.16 Polymeric Delivery of Proteins and Plasmid DNA for Tissue Engineering and Gene Therapy 165(1)
1.17 Smart Polymer for Proteins and Peptides [ 186] 165(1)
1.18 Hybrid Protein Delivery Systems [ 187] 166(1)
1.19 Ligated Gene Fusion Hybrid Delivery Systems 166(1)
1.20 Synthetically Linked Hybrid Conjugates 166(1)
1.21 Peptide Targeting 166(3)
1.22 Development of Delivery System for Peptide-Based Pharmaceuticals 169(3)
1.22.1 Formulation Consideration
169(1)
1.22.2 Pharmacokinetic Considerations
170(1)
1.22.3 Analytical Consideration
170(1)
1.22.4 Regulatory Consideration
170(2)
1.23 Non-Covalent Peptide-Based Approach the Delivery of Proteins and Nucleic Acids 172(2)
1.24 Protein Transduction Technology 174(2)
1.25 Peptide and Protein Drugs: Delivery Problems 176(1)
1.26 Intracellular Targets and Intracellular Drug Delivery 177(2)
1.27 Homing Peptides as Targeted Delivery Vehicles 179(2)
1.28 Drug Delivery of Oligonucleotides By Peptides 181(1)
1.29 Nanotherapeutics for Nanobioconjugation of Peptide and Protein 182(8)
1.29.1 Methodology of Peptide and Protein Nanoencapsulation
184(3)
1.29.1.1 Emulsification—Polymerization
184(1)
1.29.1.2 Interfacial Polymerization
185(1)
1.29.1.3 Solvent Evaporation
185(1)
1.29.1.4 Salting Out
186(1)
1.29.1.5 Coacervation
186(1)
1.29.2 Polymeric Nanocarriers
187(3)
1.29.2.1 Natural Nanocarriers
187(2)
1.29.2.2 Synthetic Nanocarriers
189(1)
1.30 Therapeutic Use of Peptide and Proteins 190(1)
Keywords 191(1)
References 192
Bhatia, Saurabh||