Atnaujinkite slapukų nuostatas

Nanowires: Building Blocks for Nanoscience and Nanotechnology 1st ed. 2016 [Kietas viršelis]

  • Formatas: Hardback, 321 pages, aukštis x plotis: 235x155 mm, weight: 6269 g, 100 Illustrations, color; 28 Illustrations, black and white; XIII, 321 p. 128 illus., 100 illus. in color., 1 Hardback
  • Serija: NanoScience and Technology
  • Išleidimo metai: 03-Aug-2016
  • Leidėjas: Springer International Publishing AG
  • ISBN-10: 331941979X
  • ISBN-13: 9783319419794
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 321 pages, aukštis x plotis: 235x155 mm, weight: 6269 g, 100 Illustrations, color; 28 Illustrations, black and white; XIII, 321 p. 128 illus., 100 illus. in color., 1 Hardback
  • Serija: NanoScience and Technology
  • Išleidimo metai: 03-Aug-2016
  • Leidėjas: Springer International Publishing AG
  • ISBN-10: 331941979X
  • ISBN-13: 9783319419794
Kitos knygos pagal šią temą:
This book provides a comprehensive summary of nanowire research in the past decade, from the nanowire synthesis, characterization, assembly, to the device applications. In particular, the developments of complex/modulated nanowire structures, the assembly of hierarchical nanowire arrays, and the applications in the fields of nanoelectronics, nanophotonics, quantum devices, nano-enabled energy, and nano-bio interfaces, are focused. Moreover, novel nanowire building blocks for the future/emerging nanoscience and nanotechnology are also discussed.
Semiconducting nanowires represent one of the most interesting research directions in nanoscience and nanotechnology, with capabilities of realizing structural and functional complexity through rational design and synthesis. The exquisite control of chemical composition, morphology, structure, doping and assembly, as well as incorporation with other materials, offer a variety of nanoscale building blocks with unique properties.

Recenzijos

The book is well worth reading. It is clear, well-organized, and informative. It is well focused on NWs and provides an overview of the extensive literature on this topic. It is helpful for researchers new to the field of NWs because it provides a useful list of many of the papers available on the subject. It is also useful to experts in the field because it stimulates ideas for new experiments. (Rosaria A. Puglisi, MRS Bulletin, Vol. 42, July, 2017) 

1 Emergence of Nanowires
1(14)
1.1 Introduction: Motivation for Nanowires
1(5)
1.1.1 Importance of One-Dimensional Materials
2(2)
1.1.2 Synthetic Challenges and Initial Design
4(1)
1.1.3 Top-Down and Bottom-Up Nanotechnology
5(1)
1.2 Micron-Scale Whiskers: VLS Concept
6(2)
1.2.1 Concept and Key Results
6(2)
1.2.2 Limitations
8(1)
1.3 Other Early Works
8(2)
1.3.1 Top-Down Lithography-Based Si Nanopillars
8(1)
1.3.2 Carbide Nanorods
9(1)
1.3.3 Nanowiskers by Vapor Phase Epitaxy
9(1)
1.4 Beginning of Rapid Growth: Vapor-Phase Nanocluster Catalyzed Growth
10(5)
References
11(4)
2 General Synthetic Methods
15(24)
2.1 Introduction
15(1)
2.2 Vapor Phase Growth
16(8)
2.2.1 Laser-Assisted Catalytic Growth
16(2)
2.2.2 Chemical Vapor Deposition
18(2)
2.2.3 Chemical Vapor Transport
20(1)
2.2.4 Molecular Beam Epitaxy
21(1)
2.2.5 Vapor-Solid-Solid Growth
22(1)
2.2.6 Vapor-Solid Growth
22(1)
2.2.7 Oxide-Assisted Growth
23(1)
2.3 Templated Growth
24(3)
2.3.1 Formation Inside Nanopores
24(1)
2.3.2 Templating Against Self-assembled Structures
25(1)
2.3.3 Construction on Existing Nanostructures
25(1)
2.3.4 Superlattice Nanowire Pattern Transfer
26(1)
2.4 Solution-Based Methods
27(4)
2.4.1 Solution-Liquid-Solid Growth
27(1)
2.4.2 Supercritical Fluid-Liquid-Solid Growth
28(1)
2.4.3 Solvothermal/Hydrothermal Synthesis
29(1)
2.4.4 Directed Solution Phase Growth
30(1)
2.5 Future Directions and Challenges
31(8)
References
32(7)
3 Structure-Controlled Synthesis
39(30)
3.1 Introduction
39(1)
3.2 Homogeneous Nanowires
40(2)
3.3 Axial Modulated Structures
42(6)
3.3.1 Early Work
42(1)
3.3.2 Semiconductor Heterojunctions
43(1)
3.3.3 Metal-Semiconductor Heterostructures
43(2)
3.3.4 p-n Homojunctions
45(3)
3.3.5 Ultrashort Morphology Features
48(1)
3.4 Radial/Coaxial Modulated Structures
48(5)
3.4.1 Semiconductor Radial Structures
49(3)
3.4.2 Coaxial Modulated Structures
52(1)
3.5 Branched/Tree-Like Structures
53(7)
3.5.1 Sequential Catalyst-Assisted Growth
54(2)
3.5.2 Solution Growth on Existing Nanowires
56(1)
3.5.3 Phase Transition Induced Branching
56(2)
3.5.4 One-Step Self-catalytic Growth
58(1)
3.5.5 Screw Dislocation Driven Growth
58(2)
3.6 Kinked Structures
60(3)
3.6.1 Undersaturation/Supersaturation-Induced Kinking
60(2)
3.6.2 Confinement-Guided Kinking
62(1)
3.7 Future Directions and Challenges
63(6)
References
64(5)
4 Hierarchical Organization in Two and Three Dimensions
69(34)
4.1 Introduction
69(1)
4.2 Post-growth Assembly
70(20)
4.2.1 Fluidic Method
70(2)
4.2.2 Langmuir-Blodgett Method
72(5)
4.2.3 Blown Bubble Method
77(1)
4.2.4 Chemical Interactions for Assembly
78(1)
4.2.5 Assembly at Interfaces
79(2)
4.2.6 Electric/Magnetic Field-Based Methods
81(1)
4.2.7 PDMS Transfer Method
82(3)
4.2.8 Printing
85(2)
4.2.9 Nanocombing-Based Assembly
87(2)
4.2.10 Other Assembly Methods
89(1)
4.3 Patterned Growth
90(7)
4.3.1 Epitaxial Growth from Patterned Nanocluster Catalysts
90(5)
4.3.2 Substrate-Step-Directed Growth
95(2)
4.4 Future Directions and Challenges
97(6)
References
97(6)
5 Nanoelectronics, Circuits and Nanoprocessors
103(40)
5.1 Introduction and Historical Perspective
103(1)
5.2 Basic Nanoelectronic Devices
104(11)
5.2.1 Field-Effect Transistors
104(8)
5.2.2 p-n Diodes
112(3)
5.3 Simple Circuits
115(14)
5.3.1 Logic Gates
115(5)
5.3.2 Ring Oscillators
120(1)
5.3.3 Demultiplexers
121(1)
5.3.4 Nonvolatile Memory
122(7)
5.4 Nanoprocessors
129(7)
5.4.1 Logic Tiles
129(2)
5.4.2 Arithmetic Logic
131(1)
5.4.3 Sequential Logic
132(1)
5.4.4 Basic Nanocomputer
133(3)
5.5 Future Directions and Challenges
136(7)
References
137(6)
6 Nanophotonics
143(34)
6.1 Introduction
143(1)
6.2 Optical Phenomena
144(8)
6.2.1 Photoluminescence from Nanowire Structures
144(2)
6.2.2 Nonlinear Processes
146(6)
6.3 Photonic Devices
152(16)
6.3.1 Nanowire Waveguides
152(1)
6.3.2 Nanoscale Light-Emitting Diodes
153(3)
6.3.3 Optically-Pumped Nanowire Lasers
156(10)
6.3.4 Electrically-Pumped Nanowire Lasers
166(1)
6.3.5 Photodetectors
167(1)
6.4 Future Directions and Challenges
168(9)
References
169(8)
7 Quantum Devices
177(26)
7.1 Introduction
177(2)
7.2 Quantum Dot Systems in Semiconductor Nanowires
179(13)
7.2.1 Configurations of Quantum Dot Systems in Nanowires
179(2)
7.2.2 Basic Electronic Properties of Quantum Dots
181(1)
7.2.3 Single Quantum Dots in Nanowires
182(2)
7.2.4 Coupled Quantum Dots in Nanowires
184(3)
7.2.5 g-Factor and Spin-Orbit Interaction
187(5)
7.3 Hybrid Superconductor-Semiconductor Devices
192(4)
7.3.1 Josephson Junctions
192(2)
7.3.2 Majorana Fermions
194(2)
7.4 Topological Insulators
196(1)
7.5 Future Directions and Challenges
197(6)
References
198(5)
8 Nanowire-Enabled Energy Storage
203(24)
8.1 Introduction
203(1)
8.2 Lithium-Ion Batteries
204(10)
8.2.1 Anodes
205(6)
8.2.2 Cathodes
211(3)
8.3 Electrochemical Capacitors
214(5)
8.4 Sodium-Ion Batteries
219(1)
8.5 Future Directions and Challenges
219(8)
References
220(7)
9 Nanowire-Enabled Energy Conversion
227(28)
9.1 Introduction
227(1)
9.2 Photovoltaics
228(10)
9.2.1 Nanowire Arrays for Enhanced Light Absorption
229(4)
9.2.2 Radial Junction Nanowires for Enhanced Carrier Separation
233(3)
9.2.3 Tuning Band Gaps of III-V Compounds
236(2)
9.3 Photoelectrochemical Conversion/Photocatalysis
238(6)
9.3.1 Si Nanowire-Based Photoelectrochemical Water Splitting
239(1)
9.3.2 Dual-Band Gap Artificial Photosynthesis
240(4)
9.4 Thermoelectrics
244(2)
9.5 Piezoelectric Effects
246(2)
9.6 Future Directions and Challenges
248(7)
References
248(7)
10 Nanowire Field-Effect Transistor Sensors
255(22)
10.1 Introduction
255(1)
10.2 Fundamental Principles of Field-Effect Transistor Sensors
256(2)
10.3 Examples of Nanoelectronic Sensors
258(5)
10.3.1 Protein Detection
258(2)
10.3.2 Nucleic Acid Detection
260(1)
10.3.3 Virus Detection
261(1)
10.3.4 Small Molecule Detection
262(1)
10.4 Methods for Enhancing the Sensitivity of Nanowire Sensors
263(8)
10.4.1 3D Branched Nanowires for Enhanced Analyte Capture Efficiency
263(1)
10.4.2 Detection in the Subthreshold Regime
263(2)
10.4.3 Reducing the Debye Screening Effect
265(2)
10.4.4 Electrokinetic Enhancement
267(1)
10.4.5 Frequency Domain Measurement
267(2)
10.4.6 Nanowire--Nanopore Sensors
269(1)
10.4.7 Double-Gate Nanowire Sensors
270(1)
10.4.8 Detection of Biomolecules in Physiological Fluids
270(1)
10.5 Future Directions and Challenges
271(6)
References
272(5)
11 Nanowire Interfaces to Cells and Tissue
277(30)
11.1 Introduction
277(1)
11.2 Nanowire/Cell Interfaces and Electrophysiological Recording
278(12)
11.2.1 Traditional Extracellular Electrophysiological Recording
278(2)
11.2.2 Nanowire Transistors for Extracellular Recording
280(4)
11.2.3 Intracellular and Intracellular-like Electrophysiological Recording
284(6)
11.3 Nanowire-Tissue Interfaces and Electrophysiological Recording
290(10)
11.3.1 Acute Brain Slice Studies with Nanowire Transistors
291(1)
11.3.2 Cardiac Tissue Studies with Nanowire Transistors
291(2)
11.3.3 3D Nano--Bioelectronic Hybrids
293(5)
11.3.4 Injectable Electronics
298(2)
11.4 Future Directions and Challenges
300(7)
References
301(6)
12 Conclusions and Outlook
307(4)
References
309(2)
Curriculum Vitae 311(4)
Index 315