Atnaujinkite slapukų nuostatas

El. knyga: Natural Language Processing in Artificial Intelligence

  • Formatas: 296 pages
  • Išleidimo metai: 01-Nov-2020
  • Leidėjas: Apple Academic Press Inc.
  • ISBN-13: 9781000711318
  • Formatas: 296 pages
  • Išleidimo metai: 01-Nov-2020
  • Leidėjas: Apple Academic Press Inc.
  • ISBN-13: 9781000711318

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Natural Language Processing in Artificial Intelligence, focuses on natural language processing, artificial intelligence, and allied areas. The book delves into natural language processing, which enables communication between people and computers and automatic translation to facilitate easy interaction with others around the world.

This volume focuses on natural language processing, artificial intelligence, and allied areas. Natural language processing enables communication between people and computers and automatic translation to facilitate easy interaction with others around the world. This book discusses theoretical work and advanced applications, approaches, and techniques for computational models of information and how it is presented by language (artificial, human, or natural) in other ways. It looks at intelligent natural language processing and related models of thought, mental states, reasoning, and other cognitive processes. It explores the difficult problems and challenges related to partiality, underspecification, and context-dependency, which are signature features of information in nature and natural languages.

Key features:

  • Addresses the functional frameworks and workflow that are trending in NLP and AI
  • Looks at the latest technologies and the major challenges, issues, and advances in NLP and AI
  • Explores an intelligent field monitoring and automated system through AI with NLP and its implications for the real world
  • Discusses data acquisition and presents a real-time case study with illustrations related to data-intensive technologies in AI and NLP.
1. A Survey on Social Business Intelligence: A Case Study of
Applications of Dynamic Social Networks for Decision Making
2. Critical
Concepts and Techniques for Information Retrieval Systems
3. Futurity of
Translation Algorithms for Neural Machine Translation (NMT) and Its Vision
4.
Role of Machine Learning and Application toward Information Retrieval in
Clouds
5. Ontology-Based Information Retrieval and Matching in IoT
Applications
6. Parts-of-Speech Tagging in NLP: Utility, Types, and Some
Popular PoS Taggers
7. Text Mining
8. A Brief Overview of Natural Language
Processing and Artificial Intelligence
9. Use of Machine Learning and a
Natural Language Processing Approach for Detecting Phishing Attacks
10. Role
of Computational Intelligence in Natural Language Processing
Brojo Kishore Mishra, PhD, is a Professor in the Computer Science and Engineering Department





at the Gandhi Institute of Engineering and Technology University (GIET), Gunupur, Odisha, India.





He has published more than 30 research papers in national and international conference





proceedings, over 25 research papers in peer-reviewed journals, and over 20 book chapters, and





has authored two books and edited three books to date. His research interests include data





mining and big data analysis, machine learning, soft computing, and evolutionary computation.

Raghvendra Kumar, PhD, is an Associate Professor in the Computer Science and Engineering





Department at GIET University, India. He was formerly associated with the Lakshmi Narain





College of Technology, Jabalpur, Madhya Pradesh, India. He also serves as Director of the IT and





Data Science Department at the Vietnam Center of Research in Economics, Management,





Environment, Hanoi, Vietnam. Dr. Kumar serves as editor of the book series Internet of





Everything: Security and Privacy Paradigm and the book series Biomedical Engineering:





Techniques and Applications. He has published a number of research papers in international





journals and has served in many roles for international and national conferences.