Atnaujinkite slapukų nuostatas

El. knyga: Nature in Silico: Population Genetic Simulation and its Evolutionary Interpretation Using C++ and R

  • Formatas: EPUB+DRM
  • Išleidimo metai: 01-Sep-2022
  • Leidėjas: Springer Nature Switzerland AG
  • Kalba: eng
  • ISBN-13: 9783030973810
  • Formatas: EPUB+DRM
  • Išleidimo metai: 01-Sep-2022
  • Leidėjas: Springer Nature Switzerland AG
  • Kalba: eng
  • ISBN-13: 9783030973810

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Dramatic advances in computing power enable simulation of DNA sequences generated by complex microevolutionary scenarios that include mutation, population structure, natural selection, meiotic recombination, demographic change, and explicit spatial geographies. Although retrospective, coalescent simulation is computationally efficient—and covered here—the primary focus of this book is forward-in-time simulation, which frees us to simulate a wider variety of realistic microevolutionary models. The book walks the reader through the development of a forward-in-time evolutionary simulator dubbed FORward Time simUlatioN Application (FORTUNA). The capacity of FORTUNA grows with each chapter through the addition of a new evolutionary factor to its code. Each chapter also reviews the relevant theory and links simulation results to key evolutionary insights. The book addresses visualization of results through development of R code and reference to more than 100 figures. All code discussed in the book is freely available, which the reader may use directly or modify to better suit his or her own research needs. Advanced undergraduate students, graduate students, and professional researchers will all benefit from this introduction to the increasingly important skill of population genetic simulation. 
Introduction and relevance.- Retrospective and prospective simulation.- Data structures and computational efficiency.- Mutation.- Population size and genetic drift.- Migration and population structure.- Meiotic recombination.- Natural selection.- Implementing all five factors simultaneously.- Modeling different life histories.- Spatially-explicit simulation.- Calculating summary statistics and visualization.- Approximate Bayesian computation: preliminaries.- Approximate Bayesian computation: implementation.- Comparing simulated genetic data to 1000 Genomes data.- The spread of the invasive species Japanese hops in the Upper Midwest, USA.
Ryan J. Haasl is an Associate Professor of Biology at the University of Wisconsin-Platteville. He holds an M.A. in Entomology from the University of Kansas and a Ph.D. in Genetics from the University of Wisconsin-Madison. His research focuses on the use of simulation and statistical computing to explore favorite topics such as natural selection targeting microsatellites, phylogenomics, and the consolidation of microevolutionary dynamics and macroevolutionary pattern. He is passionate about teaching genetics and evolutionary biology to undergraduate students and fostering public literacy in the biological sciences through outreach.