Atnaujinkite slapukų nuostatas

El. knyga: Nevanlinna Theory And Its Relation To Diophantine Approximation (Second Edition)

(Univ Of Houston, Usa)
  • Formatas: 444 pages
  • Išleidimo metai: 10-Mar-2021
  • Leidėjas: World Scientific Publishing Co Pte Ltd
  • Kalba: eng
  • ISBN-13: 9789811233524
Kitos knygos pagal šią temą:
  • Formatas: 444 pages
  • Išleidimo metai: 10-Mar-2021
  • Leidėjas: World Scientific Publishing Co Pte Ltd
  • Kalba: eng
  • ISBN-13: 9789811233524
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book describes the theories and developments in Nevanlinna theory and Diophantine approximation. Although these two subjects belong to the different areas: one in complex analysis and one in number theory, it has been discovered that a number of striking similarities exist between these two subjects. A growing understanding of these connections has led to significant advances in both fields. Outstanding conjectures from decades ago are being solved. Over the past 20 years since the first edition appeared, there have been many new and significant developments. The new edition greatly expands the materials. In addition, three new chapters were added. In particular, the theory of algebraic curves, as well as the algebraic hyperbolicity, which provided the motivation for the Nevanlinna theory.

Preface vii
1 The Theory of Algebraic Curves
1(24)
Part A Nevanlinna Theory
1(21)
A1.1 The Riemann-Hurwitz theorem and its consequences
1(7)
A1.2 The subdomain case
8(5)
A1.3 The theory of algebraic curves in Pn
13(9)
Part B Diophantine Approximation
22(3)
B1.1 Schmidt's subspace theorem over function fields
22(3)
2 The First Main Theorem and the Theory of Height
25(48)
Part A Nevanlinna Theory
25(29)
A2.1 Sheaves, divisors, line bundles
25(21)
A2.2 The Green-Jensen formula
46(3)
A2.3 The First Main Theorem
49(5)
Part B Diophantine Approximation
54(18)
B2.1 The valuation theory
54(5)
B2.2 The height and Weil function
59(13)
The Correspondence Table
72(1)
3 Nevanlinna Theory for Meromorphic Functions and Roth's Theorem
73(42)
Part A Nevanlinna Theory
73(20)
A3.1 The First Main Theorem
74(5)
A3.2 The Logarithmic Derivative Lemma
79(10)
A3.3 The Second Main Theorem for meromorphic functions
89(4)
Part B Diophantine Approximation
93(21)
B3.1 Introduction to Diophantine approximation
93(2)
B3.2 Roth's theorem and Vojta's dictionary
95(5)
B3.3 Proof of Roth's theorem
100(14)
The Correspondence Table
114(1)
4 Holomorphic Curves into Compact Riemann Surfaces
115(44)
Part A Nevanlinna Theory
115(19)
A4.1 The Ahlfors-Schwarz Lemma
115(4)
A4.2 Holomorphic curves into compact Riemann surfaces
119(8)
A4.3 A new proof of the Logarithmic Derivative Lemma
127(2)
A4.4 The equi-dimensional theory
129(5)
Part B Diophantine Approximation
134(23)
B4.1 Integral points on algebraic curves
134(1)
B4.2 Curves of genus 0
134(1)
B4.3 Rational points on curves of genus 1, the Mordell-Weil theorem
135(17)
B4.4 Integral points on curves of genus 1, the Siegel's theorem
152(3)
B4.5 Curves of genus greater than or equal to two, the theorem of Faltings
155(2)
The Correspondence Table
157(2)
5 Holomorphic Curves in Pn(C) and Schmidt's Subspace Theorem
159(66)
Part A Nevanlinna Theory
159(49)
A5.1 Cartan's Second Main Theorem
159(9)
A5.2 The use of the Second Main Theorem with truncated counting functions
168(12)
A5.3 Borel's Lemma and its applications
180(6)
A5.4 The linearly degenerated case
186(9)
A5.5 Ahlfors' approach
195(13)
Part B Diophantine Approximation
208(16)
B5.1 Schmidt's subspace theorem
208(4)
B5.2 The abc-conjecture
212(2)
B5.3 The 5-unit lemma
214(2)
B5.4 The degenerated Schmidt's subspace theorem
216(8)
The Correspondence Table
224(1)
6 The Moving Target Problems
225(38)
Part A Nevanlinna Theory
225(20)
A6.1 The moving target problem for meromorphic functions
225(2)
A6.2 The moving target problem for holomorphic curves in projective spaces
227(7)
A6.3 Cartan's conjecture with moving targets
234(6)
A6.4 Truncated Second Main Theorem with moving targets
240(5)
Part B Diophantine Approximation
245(17)
B6.1 Schmidt's subspace theorem with moving targets
245(7)
B6.2 The degenerate case
252(5)
B6.3 Applications of Schmidt's subspace theorem with moving targets
257(5)
The Correspondence Table
262(1)
7 Extension of Cartan's Theorem and Schmidt's Subspace Theorem
263(52)
Part A Nevanlinna Theory
263(35)
A7.1 The Second Main Theorem for general divisors on projective varieties
263(7)
A7.2 Results derived by computing the Nevanlinna constant
270(7)
A7.3 Holomorphic curves intersecting divisors in general and subgeneral positions
277(21)
Part B Diophantine Approximation
298(15)
B7.1 The Nevanlinna constant
298(8)
B7.2 The result of Ru-Vojta
306(7)
The Correspondence Table
313(2)
8 Equi-dimensional Nevanlinna Theory and Vojta's Conjecture
315(18)
Part A Nevanlinna Theory
315(14)
A8.1 Logarithmic Derivative Lemma for meromorphic functions on Cn
315(9)
A8.2 The equi-dimensional Nevanlinna theory
324(4)
A8.3 Griffiths' conjecture
328(1)
Part B Diophantine Approximation
329(3)
B8.1 Vojta's conjecture in Diophantine approximation
329(3)
The Correspondence Table
332(1)
9 Holomorphic Curves in Abelian Varieties and the Theorem of Faltings
333(26)
Part A Nevanlinna Theory
333(22)
A9.1 Bloch's theorem for holomorphic curves in Abelian varieties
333(14)
A9.2 The Second Main Theorem for holomorphic curves into abelian varieties
347(3)
A9.3 McQuillan's proof
350(5)
Part B Diophantine Approximation
355(2)
B9.1 Faltings' Theorem on rational points in abelian varieties
355(2)
The Correspondence Table
357(2)
10 Complex Hyperbolic Manifolds and Lang's Conjecture
359(54)
Part A Nevanlinna Theory
359(52)
A10.1 The Schwarz lemma
359(3)
A10.2 Kobayashi hyperbolicity
362(7)
A10.3 Brody's hyperbolicity
369(4)
A10.4 Algebraic hyperbolicity
373(8)
A10.5 Differential geometric criteria for hyperbolicity
381(12)
A10.6 The construction of the Finsler metric
393(11)
A10.7 Jet differentials and the fundamental vanishing theorem
404(7)
Part B Diophantine Approximation
411(2)
B10.1 Lang's conjecture
411(2)
Bibliography 413