Atnaujinkite slapukų nuostatas

New Frontiers for Metrology: From Biology and Chemistry to Quantum and Data Science: From Biology and Chemistry to Quantum and Data Science [Kietas viršelis]

Edited by , Edited by , Edited by , Edited by
  • Formatas: Hardback, 480 pages
  • Išleidimo metai: 29-Dec-2021
  • Leidėjas: IOS Press,US
  • ISBN-10: 1643682466
  • ISBN-13: 9781643682464
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 480 pages
  • Išleidimo metai: 29-Dec-2021
  • Leidėjas: IOS Press,US
  • ISBN-10: 1643682466
  • ISBN-13: 9781643682464
Kitos knygos pagal šią temą:
The use of standard and reliable measurements is essential in many areas of life, but nowhere is it of more crucial importance than in the world of science, and physics in particular. This book contains 20 contributions presented as part of Course 206 of the International School of Physics Enrico Fermi on New Frontiers for Metrology: From Biology and Chemistry to Quantum and Data Science, held in Varenna, Italy, from 4 -13 July 2019. The Course was the 7th in the Enrico Fermi series devoted to metrology, and followed a milestone in the history of measurement: the adoption of new definitions for the base units of the SI. During the Course, participants reviewed the decision and discussed how the new foundation for metrology is opening new possibilities for physics, with several of the lecturers reflecting on the implications for an easier exploration of the unification of quantum mechanics and gravity. A wide range of other topics were covered, from measuring color and appearance to atomic weights and radiation, and including the application of metrological principles to the management and interpretation of very large sets of scientific data and the application of metrology to biology. The book also contains a selection of posters from the best of those presented by students at the Course. Offering a fascinating exploration of the latest thinking on the subject of metrology, this book will be of interest to researchers and practitioners from many fields.
Preface 17(3)
M. J. T. Milton
D. S. Wiersma
C. J. Williams
M. Sega
Course group shot 20
Realising the metre
1(22)
Andrew J. Lewis
1 Introduction
1(1)
2 Length units throughout history
2(1)
3 Evolution of the definition of the metre
2(15)
3.1 The first definition of the metre
4(1)
3.2 The 1927 definition of the metre
4(1)
3.3 The 1960 definition of the metre
5(1)
3.4 The 1983 definition of the metre
6(3)
3.5 20 May 2019 definition of the metre
9(1)
3.6 Practical realisation of the metre
9(4)
3.7 Traceability to the metre
13(2)
3.8 Beat frequency measurement
15(1)
3.9 Refractive Index Compensation
16(1)
3.10 Other traceability aspects for dimensional metrology
16(1)
4 Secondary realisations
17(2)
5 X-ray interferometry
19(2)
6 Conclusions
21(2)
Dimensional metrology in practice
23(24)
Andrew J. Lewis
1 Introduction
23(1)
2 Realising the metre
24(1)
3 Interferometry
24(6)
8.1 Basics of interferometry
24(3)
3.2 Refractive Index Compensation
27(1)
3.3 Wide-field interferometers
28(2)
4 Specification and standardisation on geometrical features
30(1)
5 Fundamental principles and techniques of dimensional measurements
30(8)
5.1 The metrology loop
30(1)
5.2 Abbe principle
30(1)
5.3 Mechanical stability
31(1)
5.4 Thermal stability/thermal compensation
32(1)
5.5 Scales: high resolution, linearity, traceability
33(1)
5.6 Alignment
33(1)
5.7 Probe/surface interaction
33(1)
5.8 Error separation and reversal techniques
34(3)
5.9 Error mapping
37(1)
5.10 Multilateration
37(1)
6 Typical uncertainty contributions
38(1)
7 Dimensional metrology at the extremes of the scale
39(4)
7.1 Very long range
39(2)
7.2 Nanometrology and sub-nm metrology
41(2)
8 Dimensional metrology outside the NMIs
43(4)
Avogadro, Planck and the kilogram redefinition
47(14)
E. Massa
1 A brief history of the kilogram
47(2)
2 Mass metrology
49(1)
3 The Planck constant --- CODATA 2017 adjustment
50(1)
4 The mise en pratique of the kilogram
50(7)
4.1 The Kibble balance: H measurement
50(2)
4.2 Counting 28Si atoms: Na measurement
52(5)
5 Conclusions
57(4)
Traceability in chemical measurements: The role of data analysis
61(16)
Juris Meija
1 Introduction
61(1)
2 Calculations as the source of error
62(1)
3 Human errors
62(1)
4 Do the results speak for themselves?
63(2)
5 Dark uncertainty
65(1)
6 Understanding the data-generation process
65(2)
7 The importance of the measurement model
67(3)
7.1 Titration endpoint
67(1)
7.2 Detecting the endpoint
68(1)
7.3 Solubility calculations
69(1)
8 Traceability in curve-fitting
70(2)
8.1 Method of standard additions
70(1)
8.2 Isotope dilution
71(1)
9 What is the best estimate?
72(1)
10 Traceability chains
73(1)
10.1 Carbon isotope delta
73(1)
10.2 Arsenobetaine
73(1)
11 Summary
74(3)
Atomic weights of the elements: From measurements to the Periodic Table
77(18)
Juris Meija
1 Historical introduction
77(1)
2 Atomic-weight measurements
78(3)
2.1 Measuring the atomic weight
79(2)
3 Calibration of isotope ratio measurement results
81(6)
3.1 More complex isotope systems
83(1)
3.2 Variable transformation
83(1)
3.3 Mass-bias calibration models
84(1)
3.4 Secondary methods of calibration
85(2)
3.5 Coherence of isotope ratio measurement results
87(1)
4 Isotope ratio measurements and the International System of Units (SI)
87(1)
5 Building consensus
88(1)
6 Mathematics of isotopic composition and atomic weights
89(2)
7 Outlook
91(4)
Metrology for the safe and effective use of ionizing radiation. Part 1: Radiation dosimetry
95(24)
S. M. Judge
D. T. Burns
1 Introduction
96(1)
2 The physics of ionizing radiation metrology
96(5)
2.1 What is ionizing radiation and how does it interact with matter?
96(3)
2.2 The effects of ionizing radiation on the human body
99(2)
3 Radiation dosimetry
101(10)
3.1 Primary standards for radiation dosimetry
102(2)
3.1.1 Free-air chambers (low-to-medium energy photons)
104(2)
3.1.2 Primary standards for higher energy photons
106(3)
3.2 Monte Carlo simulation
109(1)
3.3 Summary
110(1)
4 The international measurement system for radiation dosimetry
111(4)
4.1 Traceability and equivalence
111(1)
4.2 How this works in practice for radiation dosimetry for radiotherapy
112(2)
4.3 Summary
114(1)
5 The impact of radiation dosimetry
115(1)
5.1 External beam radiotherapy
115(1)
5.2 Brachytherapy
116(1)
5.3 Diagnostic imaging
116(1)
5.4 Radiation protection
116(1)
6 Conclusions
117(2)
The SI from platinum to Planck: The biggest revolution in metrology since the French Revolution
119(12)
Carl J. Williams
1 Introduction
119(3)
2 A brief history of length metrology
122(2)
3 An even briefer history of mass metrology
124(1)
4 Redefining mass
125(1)
5 Electrical units
126(2)
6 Other units and conclusions
128(3)
Optical atomic clocks and tests of fundamental principles
131(18)
Ekkehard Peik
1 Introduction
131(2)
2 Optical atomic clocks
133(5)
3 Optical clocks with a single trapped 171Yb+ ion
138(3)
4 Tests of fundamental principles
141(3)
5 Options for a redefinition of the SI second
144(5)
The production and trade of scientific instruments (1750--1950)
149(6)
Paolo Brenni
The metric system, the Metre Convention and the BIPM
155(20)
Martin J. T. Milton
Celine Fellag Ariouet
1 Introduction
155(1)
2 The French Revolution and the demand for uniformity of weights and measures
156(1)
3 The metric system -- "for all time, for all people"
157(3)
4 Early difficulties with implementing the metric system
160(1)
5 The World Fairs and the first steps towards an international system
161(3)
6 Preparations for the Metre Convention
164(6)
7 The Metre Convention
170(3)
8 Conclusions
173(2)
The measurement of appearance
175(12)
Gael Obein
1 Introduction
175(3)
2 Color
178(1)
3 Beyond color
178(1)
4 BRDF
179(2)
5 Measurement of BRDF
181(2)
6 Measurement of appearance
183(1)
7 Conclusion
184(3)
Metrology for the safe and effective use of ionizing radiation. Part 2 Radioactivity
187(28)
S. M. Judge
1 Introduction
188(1)
2 Radioactivity
189(2)
21 Detection of ionizing radiation
191(3)
3 Radionuclide metrology
194(7)
3.1 Primary standards of radioactivity
194(1)
3.1.1 Method 1: maximizing the detection efficiency
194(4)
3.1.2 Method 2: determining the correction factor accurately
198(3)
3.2 The future of primary standardization techniques
201(1)
4 The international measurement system for radionuclide metrology
201(6)
4.1 Demonstrating equivalence of primary standards
201(4)
4.2 Demonstrating Calibration and Measurement Capabilities (CMCs)
205(1)
4.3 Dissemination of standards of radioactivity
206(1)
5 The impact of radionuclide metrology
207(4)
5.1 Diagnostic imaging
207(1)
5.2 Next generation nuclear power
208(1)
5.3 Nuclear decommissioning
208(1)
5.4 Nuclear forensics
208(1)
5.5 Worldwide radioactivity monitoring systems
209(1)
5.6 Radiopharmaceutical imaging and personalized medicine
209(2)
6 Conclusions
211(4)
Metrological traceability: A global perspective
215(16)
A. Henson
1 Metrological traceability
215(5)
1.1 Metrological traceability chains
218(2)
2 Demonstrating metrological traceability
220(5)
2.1 The CIPM Mutual Recognition Arrangement (CIPM MRA)
220(2)
2.2 The International Laboratory Accreditation Cooperation (ILAC)
222(2)
2.3 NMI services not covered by CMCs
224(1)
3 Quality infrastructure (QI)
225(1)
4 The future directions for metrological traceability
226(3)
5 In conclusion
229(2)
Metrological applications of NMR and qNMR in organic analysis
231(24)
Steven Westwood
Gustavo Martos
Norbert Stoppacher
Robert Wielgosz
1 Historical and technical background to Nuclear Magnetic Resonance (NMR)
232(4)
2 Using 1H qNMR for organic purity assignments
236(2)
3 Validation studies of 1H qNMR
238(10)
4 Applications
248(4)
4.1 Anatoxin B1
248(1)
4.2 Angiotensin
249(1)
4.3 Oxytocin
250(1)
4.4 NMR methods for the higher-order structure of proteins and mono-clonal antibodies (mAbs)
251(1)
5 Summary and conclusions
252(3)
Reference Materials: Preparation, homogeneity, stability and value assignment
255(18)
Michela Sega
1 Introduction
255(1)
2 Reference Materials and Certified Reference Materials
256(3)
3 Preparation of RMs
259(4)
3.1 Homogeneity
259(1)
3.2 Stability
260(1)
3.3 Characterization
261(1)
3.4 Value assignment
262(1)
3.5 Metrological traceability
262(1)
4 Reference materials and certified reference materials in gas analysis
263(10)
4.1 Case study: gaseous CRMs to support climate change studies
265(8)
Analysing and obtaining statistical information on time varying quantities
273(18)
Patrizia Tavella
1 Introduction
273(2)
2 Estimating time varying behaviour
275(2)
3 Stochastic processes to model time varying quantities
277(5)
4 The need for pre-processing
282(1)
5 The detection of anomalous behaviour
282(4)
6 Dynamic noise analysis
286(2)
7 Conclusion
288(3)
Timekeeping and navigation systems
291(14)
Patrizia Tavella
1 Introduction
291(1)
2 Time inside a Global Navigation Satellite System
292(2)
3 Time from a Global Navigation Satellite System
294(1)
4 Universal coordinated time and the definition of the second over the centuries
295(7)
4.1 Universal time
295(4)
4.2 Ephemeris time
299(1)
4.3 Atomic time
299(1)
4.4 UTC: the trade-off
300(1)
4.5 The future of the leap second
301(1)
5 Will time scales return in space?
302(3)
Measurement uncertainty: Historical perspective, present status and foreseeable future
305(20)
W. Bich
1 Laplace, Legendre and Gauss
305(1)
2 Theory of errors
306(1)
3 From errors to uncertainty
307(3)
4 Modern times
310(3)
5 True value
313(1)
6 Digression on the International System of Units
313(1)
7 Bridgman and the operationalism
314(2)
8 Definition of uncertainty
316(2)
9 Measures of uncertainty
318(1)
10 Broader view of measurement and measurement uncertainty
319(1)
11 Conclusion
320(5)
The future of metrology
325(16)
Carl J. Williams
John H. Lehman
Christopher W. Oates
1 Introduction
325(2)
2 Clocks and time: What we measure the best
327(4)
3 From a classical mass scale to single photons: Integrating mass, force, and power
331(5)
4 Embedded standards: NIST-on-a-Chip
336(1)
5 Quantum technologies and the future
337(4)
Fundamentals and applications in electrical metrology
341(32)
M.-O. Andre
1 History
341(2)
2 Solid-state quantum effects for electrical metrology
343(7)
2.1 The Josephson effect
345(1)
2.2 Generation of AC voltage waveforms
346(1)
2.3 The quantum Hall effect
347(3)
3 Realisation of electrical units
350(1)
4 The electronic kilogram
351(2)
5 DC resistance metrology
353(1)
6 AC impedance metrology
354(5)
7 High-frequency electrical metrology
359(3)
8 The frequency gap
362(1)
9 Metrology for electrical power and energy
363(3)
10 Conclusion
366(7)
POSTERS
Computed tomography for dimensional metrology: Design considerations for high-resolution CT systems
373(6)
Benjamin A. Bircher
1 Introduction
373(1)
2 Scaling laws for computed tomography measurement times
374(3)
2.1 Number of projections N
375(1)
2.2 X-ray target power Pxray
375(1)
2.3 Detector pixel area Apx and scintillator efficiency ηsci
376(1)
2.4 Total measurement time
376(1)
3 Conclusions
377(2)
Application of stable isotope ratio analysis to profiling methylamphetamine: Challenges to maintain comparability
379(8)
H. Salouros
M. Collins
1 Introduction
379(2)
2 Methodology
381(1)
3 Discussion
382(5)
Realization of the farad from the quantum Hall effect with a fully digital bridge: Progress report
387(6)
M. Marzano
1 Introduction
387(1)
2 New traceability chain
388(1)
3 Four-terminal-pair fully-digital impedance bridge
389(1)
4 Graphene ACQHR experiment
390(1)
5 Conclusions
391(2)
Bridge on a chip: Realization of a Kelvin bridge based on quantum Hall elements for resistance calibration
393(8)
M. Marzano
M. Kruskopf
A. R. Panna
1 Introduction
394(1)
2 Traditional Kelvin bridge
394(1)
3 Theory of operation
395(2)
4 Implementation and results
397(1)
5 Conclusions
398(3)
From atomic fountains to ultra-stable lasers
401(8)
B. Fang
H. Le Goff
B. Chupin
L. Lorini
M. Abgrall
P. Blonde
D. Rovera
P. Tuckey
P. Uhrich
J. Achkar
J. Guena
S. Zhang
N. Lucie
R. Le Tagart
Y. Le Coq
S. Bize
H. Alvarez-Martinez
N. Galland
S. Seidelin
A. Ferrier
P. Goldner
1 The atomic fountains for the SI second
402(2)
2 Spectral hole burning for ultrastable lasers and optical frequency metrology
404(2)
3 Conclusion
406(3)
Hyperbolic metamaterials by directed self-assembly of block copolymers
409(6)
I. Murataj
F. Ferrarese Lupi
Improved measurement capabilities for hydrogen sulphide reference gas mixtures in South Africa
415(8)
Nompumelelo Leshabane
James Tshilongo
Shadung J. Moja
Napo G. Ntsasa
Gumani Mphaphuli
Mudalo I. Jozela
1 Introduction
416(1)
2 Experimental
417(2)
2.1 Gravimetric preparation
417(1)
2.2 Validation of hydrogen sulphide Primary Standard Gas Mixtures
417(2)
3 Results and discussion
419(1)
3.1 Gravimetric preparation
419(1)
3.2 Validation of the H2S gas mixtures
419(1)
4 Conclusion
420(3)
Metrological aspects of tip-enhanced Raman spectroscopy p.
423(6)
A. Sacco
A. M. Rossi
Point-source atom interferometer gyroscope
429(6)
Azure Hansen
Yun-Jhih Chen
John E. Kitching
Elizabeth A. Donley
1 Introduction
429(3)
2 Performance
432(1)
3 Conclusion
433(2)
Prospects for single-photon sideband cooling of fermionic lithium
435(8)
F. Berto
C. Sias
1 Introduction
435(2)
2 Mathematical model
437(3)
3 Results
440(3)
Chip-scale wavelength standards
443(8)
Douglas G. Bopp
Matthew T. Hummon
Songbai Kang
John Kitching
Qing Li
Daron A. Westly
Sangsik Kim
Kartik Srinivasan
Vladimir Aksyuk
1 Introduction
444(1)
2 Nanophotonic circuitry as an enabler of high resolution spectroscopy
444(2)
3 First-generation NoaC A standard
446(1)
4 Second-generation NoaC A standard: grating to grating coupling
446(2)
5 Stability
448(1)
6 Conclusion
448(3)
List of participants 451