Atnaujinkite slapukų nuostatas

El. knyga: New Trends in Discrete and Computational Geometry

Edited by
  • Formatas: PDF+DRM
  • Serija: Algorithms and Combinatorics 10
  • Išleidimo metai: 06-Dec-2012
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Kalba: eng
  • ISBN-13: 9783642580437
  • Formatas: PDF+DRM
  • Serija: Algorithms and Combinatorics 10
  • Išleidimo metai: 06-Dec-2012
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Kalba: eng
  • ISBN-13: 9783642580437

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Discrete and computational geometry are two fields which in recent years have benefitted from the interaction between mathematics and computer science. The results are applicable in areas such as motion planning, robotics, scene analysis, and computer aided design. The book consists of twelve chapters summarizing the most recent results and methods in discrete and computational geometry. All authors are well-known experts in these fields. They give concise and self-contained surveys of the most efficient combinatorical, probabilistic and topological methods that can be used to design effective geometric algorithms for the applications mentioned above. Most of the methods and results discussed in the book have not appeared in any previously published monograph. In particular, this book contains the first systematic treatment of epsilon-nets, geometric tranversal theory, partitions of Euclidean spaces and a general method for the analysis of randomized geometric algorithms. Apart from mathematicians working in discrete and computational geometry this book will also be of great use to computer scientists and engineers, who would like to learn about the most recent results.

Daugiau informacijos

Springer Book Archives
I. Combinatorics and Algorithms of Arrangements.-
1. Introduction.-
2.
Arrangements of Curves in the Plane.-
3. Lower Envelopes and
Davenport-Schinzel Sequences.-
4. Faces in Arrangements.-
5. Arrangements in
Higher Dimensions.-
6. Summary.- References.- II. Backwards Analysis of
Randomized Geometric Algorithms.-
1. Introduction.-
2. Delaunay
Triangulations of Convex Polygons.-
3. Intersecting Line Segments.-
4.
Constructing Planar Convex Hulls.-
5. Backwards Analysis of QUICKSORT.-
6. A
Bad Example.-
7. Linear Programming for Small Dimension.-
8. Welzls Minidisk
Algorithm.-
9. Clarksons Backwards Analysis of the Conflict Graph Based on
the Convex Hull Algorithm.-
10. Odds and Ends.- References.- III.
Epsilon-Nets and Computational Geometry.-
1. Range Spaces and ?-Nets.-
2.
Geometric Range Spaces.-
3. A Sample of Applications.-
4. Removing
Logarithms.-
5. Removing the Randomization.- References.- IV. Complexity of
Polytope Volume Computation.-
1. Jumps of the Derivatives.-
2. Exact Volume
Computation is Hard.-
3. Volume Approximation.- References.- V. Allowable
Sequences and Order Types in Discrete and Computational Geometry.-
1.
Introduction.-
2. Combinatorial Types of Configurations in the Plane and
Allowable Sequences.-
3. Arrangements of Lines and Pseudolines.-
4.
Applications of Allowable Sequences.-
5. Order Types of Points in Rd and
Geometric Sorting.-
6. The Number of Order Types in Rd.-
7. Isotopy and
Realizability Questions.-
8. Lattice Realization of Order Types and the
Problem of Robustness in Computational Geometry.- References.- VI. Hyperplane
Approximation and Related Topics.-
1. Introduction.-
2. MINSUM Problem:
Orthogonal L1-Fit.-
3. MINSUM Problem: Vertical L1-Fit.-
4. MINMAX Problem:
Orthogonal L?-Fit.-
5. MINMAX Problem: VerticalL?-Fit.-
6. Related Issues.-
References.- VII. Geometric Transversal Theory.-
1. Introduction.-
2.
Hadwiger-Type Theorems.-
3. The Combinatorial Complexity of the Space of
Transversals.-
4. Translates of a Convex Set.-
5. Transversal Algorithms.-
6.
Other Directions.- References.- VIII. Hadwiger-Levis Covering Problem
Revisited.-
0. Introduction.-
1. On I0(K) and I?(K).-
2. On Il(K) and k-fold
Illumination.-
3. Some Simple Remarks on H(B).-
4. On Convex Bodies with
Finitely Many Corner Points.-
5. Solution of Hadwiger-Levis Covering Problem
for Convex Polyhedra with Affine Symmetry.- References.- IX. Geometric and
Combinatorial Applications of Borsuks Theorem.-
1. Introduction.-
2. Van
Kampen-Flores Type Results.-
3. The Ham-Sandwich Theorem.-
4. Centrally
Symmetric Polytopes.-
5. Knesers Conjecture.-
6. Sphere Coverings.-
References.- X. Recent Results in the Theory of Packing and Covering.-
1.
Introduction.-
2. Preliminaries and Basic Concepts.-
3. A Review of Some
Classical Results in the Plane.-
4. Economical Packing in and Covering of the
Plane.-
5. Multiple Packing and Covering.-
6. Some Computational Aspects of
Packing and Covering.-
7. Restrictions on the Number of Neighbors in a
Packing.-
8. Selected Topics in 3 Dimensions.- References.- XI. Recent
Developments in Combinatorial Geometry.-
1. The Distribution of Distances.-
2. Graph Dimensions.-
3. Geometric Graphs.-
4. Arrangements of Lines in
Space.- References.- XII. Set Theoretic Constructions in Euclidean Spaces.-
0. Introduction.-
1. Simple Transfinite Constructions.-
2. Closed Sets or
Better Well-Orderings.-
3. Extending the Coloring More Carefully.-
4. The Use
of the Continuum Hypothesis.-
5. The Infinite Dimensional Case.-
6. Large
Paradoxical Sets in Another Sense.- References.- AuthorIndex.