Atnaujinkite slapukų nuostatas

El. knyga: Newton's Method: an Updated Approach of Kantorovich's Theory

  • Formatas: PDF+DRM
  • Serija: Frontiers in Mathematics
  • Išleidimo metai: 05-Jul-2017
  • Leidėjas: Birkhauser Verlag AG
  • Kalba: eng
  • ISBN-13: 9783319559766
  • Formatas: PDF+DRM
  • Serija: Frontiers in Mathematics
  • Išleidimo metai: 05-Jul-2017
  • Leidėjas: Birkhauser Verlag AG
  • Kalba: eng
  • ISBN-13: 9783319559766

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book shows the importance of studying semilocal convergence in iterative methods through Newton's method and addresses the most important aspects of the Kantorovich's theory including implicated studies. Kantorovich's theory for Newton's method used techniques of functional analysis to prove the semilocal convergence of the method by means of the well-known majorant principle. To gain a deeper understanding of these techniques the authors return to the beginning and present a deep-detailed approach of Kantorovich's theory for Newton's method, where they include old results, for a historical perspective and for comparisons with new results, refine old results, and prove their most relevant results, where alternative approaches leading to new sufficient semilocal convergence criteria for Newton's method are given. The book contains many numerical examples involving nonlinear integral equations, two boundary value problems and systems of nonlinear equations related to numerous physical phenomena. The book is addressed to researchers in computational sciences, in general, and in approximation of solutions of nonlinear problems, in particular.

Recenzijos

The text is easy to follow with full technical details given. Historical remarks are given throughout, which makes the reading especially interesting. The book also contains some numerical examples illustrating the theoretical analysis. It is a useful reference for researchers working on Newton method in Banach spaces. (Bangti Jin, zbMATH 1376.65088, 2018) This book is well written and will be useful to researchers interested in the theory of Newtons method in Banach spaces. Two of its merits have to be mentioned explicitly: the authors offer all details for the proofs of all the results presented in the book, and, moreover, they also include significant material from their own results on the theory of Newton's method which were carried out over many years of research work. (Vasile Berinde, Mathematical Reviews, March, 2018)

Preface vii
1 The classic theory of Kantorovich
1(38)
1.1 The Newton-Kantorovich theorem
1(27)
1.1.1 Recurrence relations of Kantorovich
2(5)
1.1.2 The majorant principle of Kantorovich
7(10)
1.1.3 The "method of majorizing sequences"
17(7)
1.1.4 New approach: a "majorant function" from an initial value problem
24(4)
1.2 Applications
28(11)
1.2.1 Integral equations
29(3)
1.2.2 Boundary value problems
32(7)
2 Convergence conditions on the second derivative of the operator
39(44)
2.1 Operators with Lipschitz-type second-derivative
40(30)
2.1.1 Operators with Lipschitz second-derivative
40(6)
2.1.2 Operators with Holder second-derivative
46(1)
2.1.3 Operators with w-Lipschitz second-derivative
47(1)
2.1.3.1 Existence of a majorizing sequence
48(6)
2.1.3.2 Existence of a majorant function
54(1)
2.1.3.3 Semilocal convergence
55(1)
2.1.3.4 Uniqueness of solution and order of convergence
55(2)
2.1.3.5 Applications
57(6)
2.1.3.6 A little more: three particular cases
63(7)
2.2 Operators with w-bounded second-derivative
70(13)
2.2.1 Existence of a majorant function
72(1)
2.2.2 Existence of a majorizing sequence
73(2)
2.2.3 Semilocal convergence
75(1)
2.2.4 Uniqueness of solution and order of convergence
76(2)
2.2.5 Applications
78(5)
3 Convergence conditions on the k-th derivative of the operator
83(44)
3.1 Polynomial type equations
83(12)
3.1.1 Semilocal convergence
85(4)
3.1.2 Uniqueness of solution and order of convergence
89(2)
3.1.3 Applications
91(4)
3.2 Operators with w-bounded k-th-derivative
95(14)
3.2.1 Existence of a majorizing sequence
96(6)
3.2.2 Existence of a majorant function
102(1)
3.2.3 Semilocal convergence
103(1)
3.2.4 Uniqueness of solution and order of convergence
104(1)
3.2.5 Application
105(4)
3.3 Operators with w-Lipschitz k-th-derivative
109(18)
3.3.1 Existence of a majorizing sequence
110(6)
3.3.2 Existence of a majorant function
116(2)
3.3.3 Semilocal convergence
118(1)
3.3.4 Uniqueness of solution and order of convergence
118(2)
3.3.5 Application
120(2)
3.3.6 Relaxing convergence conditions
122(5)
4 Convergence conditions on the first derivative of the operator
127(34)
4.1 Operators with Lipschitz first-derivative
128(6)
4.1.1 Existence of a majorizing sequence
128(4)
4.1.2 Existence of a majorant function
132(1)
4.1.3 Semilocal convergence
132(2)
4.2 Operators with w-Lipschitz first-derivative
134(16)
4.2.1 Semilocal convergence using recurrence relations
135(1)
4.2.1.1 Recurrence relations
135(1)
4.2.1.2 Analysis of the scalar sequences
136(1)
4.2.1.3 Semilocal convergence
137(2)
4.2.2 Uniqueness of solution and order of convergence
139(4)
4.2.3 Application
143(4)
4.2.4 Particular cases
147(1)
4.2.4.1 Operators with Lipschitz first-derivative
148(1)
4.2.4.2 Operators with Holder first-derivative
149(1)
4.3 Operators with center w-Lipschitz first-derivative
150(11)
4.3.1 Semilocal convergence
151(5)
4.3.2 Particular case: operators with center Lipschitz first-derivative
156(1)
4.3.3 Application
157(4)
Bibliography 161
José Antonio Ezquerro is Professor at the Department of Mathematics and Computation at the University of La Rioja in Spain. M. A. Hernįndez-Verón is Professor at the Department of Mathematics and Computation at the University of La Rioja in Spain.