Atnaujinkite slapukų nuostatas

El. knyga: Nilpotent Structures in Ergodic Theory

Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Nilsystems play a key role in the structure theory of measure preserving systems, arising as the natural objects that describe the behavior of multiple ergodic averages. This book is a comprehensive treatment of their role in ergodic theory, covering development of the abstract theory leading to the structural statements, applications of these results, and connections to other fields.

Starting with a summary of the relevant dynamical background, the book methodically develops the theory of cubic structures that give rise to nilpotent groups and reviews results on nilsystems and their properties that are scattered throughout the literature. These basic ingredients lay the groundwork for the ergodic structure theorems, and the book includes numerous formulations of these deep results, along with detailed proofs. The structure theorems have many applications, both in ergodic theory and in related fields; the book develops the connections to topological dynamics, combinatorics, and number theory, including an overview of the role of nilsystems in each of these areas. The final section is devoted to applications of the structure theory, covering numerous convergence and recurrence results.

The book is aimed at graduate students and researchers in ergodic theory, along with those who work in the related areas of arithmetic combinatorics, harmonic analysis, and number theory.
Chapter 1 Introduction
1(8)
1 Characteristic factors
1(2)
2 Towers of factors
3(1)
3 Cubes, norms, nilfactors, and structure theorems
4(2)
4 Nilsequences in ergodic theory and in combinatorics
6(1)
Organization of the book
7(1)
Acknowledgments
8(1)
Part 1 Basics
9(72)
Chapter 2 Background material
11(16)
1 Groups and commutators
11(3)
2 Probability spaces
14(6)
3 Polish, locally compact, and compact abelian groups
20(2)
4 Averages on a locally compact group
22(2)
References and further comments
24(3)
Chapter 3 Dynamical Background
27(20)
1 Topological dynamical systems
27(2)
2 Ergodic theory
29(7)
3 The Ergodic Theorems
36(2)
4 Multiple recurrence and convergence
38(2)
5 Joinings
40(2)
6 Inverse limits of dynamical systems
42(3)
References and further comments
45(2)
Chapter 4 Rotations
47(14)
1 Topological and measurable rotations
47(5)
2 The Kronecker factor
52(3)
3 Decomposition of a system via the Kronecker
55(4)
References and further comments
59(2)
Chapter 5 Group Extensions
61(20)
1 Group extensions
61(4)
2 Extensions by a compact abelian group
65(2)
3 Cocycles and coboundaries
67(11)
References and further comments
78(3)
Part 2 Cubes
81(70)
Chapter 6 Cubes in an algebraic setting
83(24)
1 Basics of algebraic cubes
83(4)
2 Cubes in an abelian group
87(8)
3 Cubes in nonabelian groups
95(5)
4 Cubes in homogeneous spaces
100(5)
References and further comments
105(2)
Chapter 7 Dynamical cubes
107(6)
1 Basics of dynamical cubes
107(3)
2 Properties of topological dynamical cubes
110(2)
References and further comments
112(1)
Chapter 8 Cubes in ergodic theory
113(22)
1 Initializing the construction: the measure μ[ 2] and the seminorm ·e;
114(4)
2 Construction of the measures μ[ k]
118(6)
3 The seminorms ·e; k
124(3)
4 Dynamical dual functions
127(7)
References and further comments
134(1)
Chapter 9 The Structure factors
135(16)
1 Construction of the structure factors
135(8)
2 Structured systems
143(4)
3 Ergodic seminorms and the centralizer
147(3)
References and further comments
150(1)
Part 3 Nilmanifolds and nilsystems
151(114)
Chapter 10 Nilmanifolds
153(22)
1 Nilpotent Lie groups
153(5)
2 Nilmanifolds
158(4)
3 Subnilmanifolds
162(4)
4 Bases and generators
166(4)
5 Countability of nilmanifolds
170(2)
References and further comments
172(3)
Chapter 11 Nilsystems
175(18)
1 Topological and measure theoretic nilsystems
175(4)
2 Ergodic and minimal nilsystems
179(5)
3 Applications and generalizations
184(4)
4 Unipotent affine transformations of a nilmanifold
188(4)
References and further comments
192(1)
Chapter 12 Cubic structures in nilmanifolds
193(28)
1 Cubes in nilmanifolds and nilsystems
194(8)
2 Gowers seminorms for functions on a nilmanifold
202(4)
3 Algebraic dual functions
206(6)
4 The order fc Fourier algebra of a nilmanifold
212(3)
5 Some properties of the Fourier algebra of order k
215(4)
References and further comments
219(2)
Chapter 13 Factors of nilsystems
221(14)
1 Basics of factors of nilsystems
221(6)
2 Quotient by a compact subgroup of the centralizer
227(4)
3 Inverse limits of nilsystems and their intrinsic topology
231(3)
References and further comments
234(1)
Chapter 14 Polynomials in nilmanifolds and nilsystems
235(20)
1 Polynomial sequences in a group
235(7)
2 Polynomial orbits in a nilmanifold
242(5)
3 Dynamical applications
247(5)
References and further comments
252(3)
Chapter 15 Arithmetic progressions in nilsystems
255(10)
1 Arithmetic progressions in nilmanifolds and nilsystems
255(5)
2 Ergodic decomposition
260(4)
3 References and further comments
264(1)
Part 4 Structure Theorems
265(62)
Chapter 16 The Ergodic Structure Theorem
267(10)
1 Various forms of the Ergodic Structure Theorem
267(3)
2 Nilsequences and a nonergodic Structure Theorem
270(4)
3 Factors of inverse limits of nilsystems
274(1)
References and further comments
275(2)
Chapter 17 Other structure theorems
277(8)
1 A Topological Structure Theorem
278(2)
2 The Inverse Theorem for Gowers norms
280(3)
References and further comments
283(2)
Chapter 18 Relations between consecutive factors
285(18)
1 Starting the induction and an overview of the proof
285(1)
2 First properties of the extension between consecutive factors
286(4)
3 Cocycles of type k
290(4)
4 From cocycles of type k to systems of order k
294(3)
5 Connectedness
297(5)
References and further comments
302(1)
Chapter 19 The Structure Theorem in a particular case
303(14)
1 Strategy and preliminaries
303(3)
2 Construction of a group of transformations
306(5)
3 X is a nilsystem
311(5)
References and further comments
316(1)
Chapter 20 The Structure Theorem in the general case
317(10)
1 Further understanding of cocycles of type k
317(4)
2 Countability
321(3)
3 General cocycles and the Structure Theorem
324(2)
References and further comments
326(1)
Part 5 Applications
327(82)
Chapter 21 The method of characteristic factors
329(20)
1 The van der Corput Lemma
329(4)
2 Arithmetic progressions and linear patterns
333(5)
3 Convergence of polynomial averages
338(7)
References and further comments
345(4)
Chapter 22 Uniformity seminorms on l∞ and pointwise convergence of cubic averages
349(16)
1 Uniformity seminorms along a sequence of intervals
349(6)
2 Relations with Gowers norms on ZN
355(5)
3 Pointwise convergence of cubic averages
360(4)
References and further comments
364(1)
Chapter 23 Multiple correlations, good weights, and anti-uniformity
365(20)
1 Decompositions for multicorrelations
366(5)
2 Bounding weighted ergodic averages
371(5)
3 Anti-uniformity
376(3)
4 A nilsequence version of the Wiener-Wintner Theorem
379(4)
References and further comments
383(2)
Chapter 24 Inverse results for uniformity seminorms and applications
385(14)
1 Inverse results for uniformity seminorms
385(7)
2 Characterization of good weights for Multiple Ergodic Theorems
392(2)
3 Correlation sequences and nilsequences
394(3)
References and further comments
397(2)
Chapter 25 The comparison method
399(10)
1 Recurrence and convergence for the primes
399(6)
2 Multiple polynomial averages along the primes
405(1)
References and further comments
406(3)
Bibliography 409(10)
Index of Terms 419(6)
Index of Symbols 425
Bernard Host, Universite Paris-Est Marne-la-Vallee, Champs-sur-Marne, France.

Bryna Kra, Northwestern University, Evanston, IL.