Atnaujinkite slapukų nuostatas

El. knyga: Non-Equilibrium Air Plasmas at Atmospheric Pressure

Edited by (ABB Corporate Research, Baden, Switzerland), Edited by , Edited by (Polytechnic University, Brooklyn, New York, USA), Edited by
  • Formatas: 700 pages
  • Serija: Series in Plasma Physics
  • Išleidimo metai: 29-Nov-2004
  • Leidėjas: Institute of Physics Publishing
  • Kalba: eng
  • ISBN-13: 9781482269123
Kitos knygos pagal šią temą:
  • Formatas: 700 pages
  • Serija: Series in Plasma Physics
  • Išleidimo metai: 29-Nov-2004
  • Leidėjas: Institute of Physics Publishing
  • Kalba: eng
  • ISBN-13: 9781482269123
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Atmospheric-pressure plasmas continue to attract considerable research interest due to their diverse applications, including high power lasers, opening switches, novel plasma processing applications and sputtering, EM absorbers and reflectors, remediation of gaseous pollutants, excimer lamps, and other noncoherent light sources. Atmospheric-pressure plasmas in air are of particular importance as they can be generated and maintained without vacuum enclosure and without any additional feed gases.

Non-Equilibrium Air Plasmas at Atmospheric Pressure reviews recent advances and applications in the generation and maintenance of atmospheric-pressure plasmas. With contributions from leading international researchers, the coverage includes advances in atmospheric-pressure plasma source development, diagnostics and characterization, air plasma chemistry, modeling and computational techniques, and an assessment of the status and prospects of atmospheric-pressure air plasma applications. The extensive application sections make this book attractive for practitioners in many fields where technologies based on atmospheric-pressure air plasmas are emerging.

Recenzijos

With expert authors drawn from a wide range of backgrounds, the book is beautifully detailed, including in each chapter a large number of highly relevant and well-chosen references. The well-balanced and logical structure of the book allows one to easily jump in to a particular area The material provides not only a must for the scientist working in atmospheric air plasmas, but is also relevant to those involved in the study or development of other (non-air) high pressure plasma technology. I thoroughly recommend this book to all plasma scientists whether involved with high- or low-pressure plasmas. Dr. J. Bradley, in UMIST, UK, 2007

Foreword ix
Introduction and Overview
1(16)
Motivation
2(2)
Parameter Space of Interest
4(3)
Naturally-occurring Air Plasmas
7(2)
Sources of Additional Information
9(3)
Organization of this Book
12(5)
History of Non-Equilibrium Air Discharges
17(59)
Introduction
17(1)
Historical Roots of Electrical Gas Discharges
17(2)
Historical Progression of Generating Techniques for Hot and Cold Plasmas
19(10)
Generation of hot plasmas
19(2)
Generation of cold plasmas
21(3)
Properties of non-equilibrium air plasmas
24(5)
Electrical Breakdown in Dense Gases
29(12)
Discharge classification and Townsend breakdown
29(6)
Streamer breakdown
35(3)
Pulsed air breakdown and runaway electrons
38(3)
Corona Discharges
41(27)
Phenomenology of corona discharges
41(6)
Negative dc corona discharges
47(7)
Positive dc corona discharges
54(6)
AC corona discharges
60(3)
Pulsed streamer corona discharges
63(5)
Fundamentals of Dielectric-Barrier Discharges
68(8)
Early investigations
68(2)
Electrode configurations and discharge properties
70(1)
Overall discharge parameters
70(6)
Kinetic Description of Plasmas
76(48)
Particles and Distributions
76(14)
Forces, Collisions, and Reactions
90(15)
The Kinetic Equation
105(12)
Evaluation and Simplification of the Kinetic Equation
117(7)
Air Plasma Chemistry
124(59)
Introduction
124(3)
Air Plasma Chemistry Involving Neutral Species
127(9)
Introduction
127(1)
Neutral chemistry in atmospheric-pressure air plasmas
128(2)
Summary of the important reactions for the neutral air plasma chemistry
130(6)
Ion-Molecule Reactions in Air Plasmas at Elevated Temperatures
136(18)
Introduction
136(2)
Internal energy definitions
138(2)
Ion-molecule reactions
140(13)
Summary
153(1)
Non-Equilibrium Air Plasma Chemistry
154(14)
Introduction
154(2)
Translational and vibrational energy dependence of the rates of chemical processes
156(5)
Advances in elucidating chemical reactivity at very high vibrational excitation
161(7)
Recombination in Atmospheric-Pressure Air Plasmas
168(15)
Theory
169(1)
O+2 + e-
170(1)
NO+ + e-
171(2)
N+2 + e-
173(1)
H3O+(H2O)n
174(1)
High pressure recombination
175(8)
Modeling
183(93)
Introduction
183(2)
Computational Methods for Multi-dimensional Nonequilibrium Air Plasmas
185(14)
Introduction
185(1)
Basic assumptions
186(1)
The conservation equations
186(3)
Equations of state
189(1)
Electrodynamic equations
189(1)
Transport properties
190(3)
Chemical kinetics
193(1)
Numerical method
193(2)
Simulation results
195(3)
Conclusions
198(1)
DC Glow Discharges in Atmospheric Pressure Air
199(34)
Introduction
199(1)
Two-temperature kinetic simulations
200(11)
Predicted electric discharge characteristics
211(7)
Experimental dc glow discharges in atmospheric pressure air plasmas
218(10)
Electrical characteristics and power requirements of dc discharges in air
228(3)
Conclusions
231(2)
Multidimensional Modeling of Trichel Pulses in Negative Pin-to-Plane Corona in Air
233(12)
Introduction
233(2)
Numerical model
235(3)
Results of numerical simulations
238(6)
Conclusions
244(1)
Electrical Models of DBDs and Glow Discharges in Small Geometries
245(17)
Introduction
245(1)
Model of plasma initiation and evolution
246(5)
Dielectric barrier discharges
251(7)
Micro-discharges: discharges in small geometries
258(1)
Conclusions
259(3)
A Computational Model of Initial Breakdown in Geometrically Complicated Ssystems
262(14)
Introduction
262(3)
The numerical model
265(4)
Simulation results
269(5)
Discussion
274(2)
DC and Low Frequency Air Plasma Sources
276(86)
Introduction
276(1)
Barrier Discharges
277(9)
Multifilament barrier discharges
278(2)
Modeling of barrier discharges
280(6)
Atmospheric Pressure Glow Discharge Plasmas and Atmospheric Pressure Townsend-like Discharge Plasmas
286(7)
Introduction
286(1)
Realization of an APG discharge plasma
287(4)
Applications of APG discharge and APT discharge plasmas
291(2)
Homogeneous Barrier Discharges
293(13)
DBD-based discharges at atmospheric pressure
294(5)
The resistive barrier discharge (RBD)
299(2)
Diffuse discharges by means of water electrodes
301(5)
Discharges Generated and Maintained in Spatially Confined Geometries: Microhollow Cathode (MHC) and Capillary Plasma Electrode (CPE) Discharges
306(22)
The microhollow cathode discharge
307(12)
The cathode boundary layer discharge
319(2)
The capillary plasma electrode discharge
321(3)
Summary
324(4)
Corona and Steady State Glow Discharges
328(22)
Introduction
328(1)
Methods to control negative corona parameters
329(5)
DC glow discharge in air flow
334(4)
Transitions between negative corona, glow and spark discharge forms
338(10)
Pulsed diffuse glow discharges
348(2)
Operational Characteristics of a Low Temperature AC Plasma Torch
350(12)
Introduction
350(1)
Torch plasma
351(8)
Power consumption calculation
359(3)
High Frequency Air Plasmas
362(84)
Introduction
362(2)
Laser Initiated or Sustained, Seeded High-Pressure Plasmas
364(31)
Introduction
364(1)
Laser-sustained plasmas with CO seedant
365(14)
Ultraviolet Laser Produced TMAE Seed Plasma
379(16)
Radiofrequency and Microwave Sustained High-Pressure Plasmas
395(24)
Introduction
395(1)
Review of rf plasma torch experiments
395(11)
Conclusions
406(1)
Laser initiated and rf sustained experiments
407(6)
Methods for spatial localization of a microwave discharge
413(6)
Repetitively Pulsed Discharges in Air
419(8)
Introduction
419(2)
Experiments with a single pulse
421(2)
Experiments with 100 kHz repetitive discharge
423(4)
Conclusions
427(1)
Electron-Beam Experiment with Laser Excitation
427(16)
Introduction
427(1)
Electron loss reduction
428(1)
Experimental discharge; electron beam ionizer
429(2)
Results and analysis of discharge operation
431(9)
Summary; appraisal of the technique
440(3)
Research Challenges and Opportunities
443(3)
Plasma Diagnostics
446(91)
Introduction
446(4)
Elastic and Inelastic Laser Scattering in Air Plasmas
450(32)
Background and basic theory
450(12)
Practical considerations
462(3)
Measurements of vibrational distribution function
465(4)
Filtered scattering
469(11)
Conclusions
480(2)
Electron Density Measurements by Millimeter Wave Interferometry
482(6)
Introduction
482(1)
Electromagnetic wave propagation in plasma
483(3)
Plasma density determination
486(2)
Electron Density Measurement by Infrared Heterodyne Interferometry
488(13)
Introduction
488(2)
Index of refraction
490(2)
The infrared heterodyne interferometer
492(1)
Application to atmospheric pressure air microplasmas
493(1)
Measurement of the electron density in dc plasmas
494(4)
Measurement of the electron density in pulsed operation
498(2)
Conclusions
500(1)
Plasma Emission Spectroscopy in Atmospheric Pressure Air Plasmas
501(16)
Temperature measurement
501(5)
NO A-X and N2 C-B rotational temperature measurements
506(2)
N2+ B-X rotational temperature measurements
508(1)
Measurements of electron number density by optical emission spectroscopy
508(9)
Ion Concentration Measurements by Cavity Ring-Down Spectroscopy
517(20)
Introduction
517(1)
Cavity ring-down spectroscopy
518(2)
N2+ measurements
520(11)
NO+ measurements
531(6)
Current Applications of Atmospheric Pressure Air Plasmas
537(136)
Introduction
537(2)
Electrostatic Precipitation
539(12)
Historical development and current applications
539(2)
Main physical processes involved in electrostatic precipitation
541(5)
Large industrial electrostatic precipitators
546(3)
Intermittent and pulsed energization
549(2)
Ozone Generation
551(14)
Introduction: Historical development
551(2)
Ozone properties and ozone applications
553(1)
Ozone formation in electrical discharges
554(1)
Kinetics of ozone and nitrogen oxide formation
555(5)
Technical aspects of large ozone generators
560(3)
Future prospects of industrial ozone generation
563(2)
Electromagnetic Reflection, Absorption, and Phase Shift
565(9)
Introduction
565(1)
Electromagnetic theory
566(3)
Air plasma characteristics
569(2)
Plasma power
571(1)
Applications
572(2)
Plasma Torch for Enhancing Hydrocarbon--Air Combustion in the Scramjet Engine
574(13)
Introduction
574(3)
Plasma for combustion enhancement
577(3)
Plasma torch for the application
580(7)
The Plasma Mitigation of the Shock Waves in Supersonic/Hypersonic Flights
587(10)
Introduction
587(1)
Methods for flow control
588(1)
Plasma spikes for the mitigation of shock waves: experiments and results
589(8)
Surface Treatment
597(24)
Introduction
597(2)
Experimental
599(2)
Cleaning
601(4)
Oxidation
605(2)
Functionalization
607(6)
Etching
613(2)
Deposition
615(2)
Conclusions
617(4)
Chemical Decontamination
621(22)
Introduction
621(1)
de-NOx process
622(3)
Non-thermal plasmas for de-NOx
625(5)
Parametric investigation for de-NOx
630(2)
Pilot plant and on-site tests
632(1)
Effects of gas mixtures
632(4)
Environmentally harmful gas treatments
636(3)
Conclusion
639(4)
Biological Decontamination by Non-equilibrium Atmospheric Pressure Plasmas
643(12)
Non-equilibrium, high pressure plasma generators
643(2)
Inactivation kinetics
645(3)
Analysis of the inactivation factors
648(5)
Conclusions
653(2)
Medical Applications of Atmospheric Plasmas
655(18)
A bio-compatible plasma source
655(2)
In vivo treatment using electric and plasma methods
657(6)
Plasma needle and its properties
663(3)
Plasma interactions with living objects
666(7)
Appendix 673(6)
Index 679


K.H. Becker, U. Kogelschatz, K.H. Schoenbach, R.J. Barker