Atnaujinkite slapukų nuostatas

El. knyga: Non-equilibrium Statistical Mechanics and Turbulence

(University of Oxford), Edited by (University of Warwick), (Ecole Normale Supérieure, Lyon), (Weizmann Institute of Science, Israel), Edited by (University of Warwick)

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

A modern introduction to methods of statistical mechanics in turbulence, this volume explains the methodology of non-equilibrium statistical mechanics and how it plays an increasingly important role in modern turbulence research. The range of relevant tools and methods is so wide and developing so fast, that until now there has not been a single book covering the subject. This much-needed book is comprised of three harmonized lecture courses by world class experts in statistical physics and turbulence: John Cardy introduces Field Theory and Non-Equilibrium Statistical Mechanics; Gregory Falkovich discusses Turbulence Theory as part of Statistical Physics; and Krzysztof Gawedzki examines Soluble Models of Turbulent Transport. To encourage readers to deepen their understanding of the theoretical material, each chapter contains exercises with solutions. Essential reading for students and researchers in the field of theoretical turbulence, this volume will also interest any scientist or engineer who applies knowledge of turbulence and non-equilibrium physics to their work.

This self-contained volume introduces modern methods of statistical mechanics in turbulence, with three harmonised lecture courses by world class experts.

This self-contained volume introduces modern methods of statistical mechanics in turbulence, with three harmonised lecture courses by world class experts.

Daugiau informacijos

This self-contained volume introduces modern methods of statistical mechanics in turbulence, with three harmonised lecture courses by world class experts.
Preface ix
1 Gregory Falkovich. Introduction to turbulence theory. 1
1.1 Introduction
1
1.2 Weak wave turbulence
3
1.3 Strong wave turbulence
8
1.4 Incompressible turbulence
12
1.4.1 Three dimensional turbulence
12
1.4.2 Two-dimensional Turbulence
15
1.4.3 Passive Scalar Turbulence
15
1.4.4 Two-dimensional enstrophy cascade
18
1.5 Zero modes and anomalous scaling
18
1.6 Inverse cascades
24
1.6.1 Passive scalar in a compressible flow
25
1.6.2 Inverse energy cascade in two dimensions
27
1.7 Conclusion
30
1.8 Exercises
31
1.8.1 Problems
31
1.8.2 Solutions
32
References
42
2 Krzysztof Gawedzki. Soluble models of turbulent transport 44
2.1 Introduction
44
2.2 Lecture
1. Turbulent flow as a dynamical system
45
2.2.1 Navier-Stokes equations
46
2.2.2 Transport phenomena
47
2.2.3 Problems
53
2.3 Lecture
2. Multiplicative ergodic theory
54
2.3.1 Natural measures
54
2.3.2 Tangent flow
57
2.3.3 Stretching exponents at long times
58
2.3.4 Problems
63
2.4 Lecture
3. Kraichnan model
64
2.4.1 Lagrangian trajectories and eddy diffusion
64
2.4.2 Tangent flow in Kraichnan velocities
66
2.4.3 The uses of multiplicative large deviations
70
2.4.4 Problems
71
2.5 Lecture
4. Generalized flows and dissipative anomaly
72
2.5.1 Two-particle dispersion
73
2.5.2 Phases of the Lagrangian flow
74
2.5.3 Scalar cascades
77
2.5.4 Problems
81
2.6 Lecture
5. Zero-mode scenario for intermittency
81
2.6.1 Stochastic PDE for scalar
81
2.6.2 Evolution of scalar correlation functions
82
2.6.3 Zero modes
83
2.7 Problems
86
2.8 End remarks
87
2.9 Solutions of problems
88
2.9.1 Problems to Lecture 1
88
2.9.2 Problems to Lecture 2
92
2.9.3 Problems to Lecture 3
93
2.9.4 Problems to Lecture 4
100
2.9.5 Problems to Lecture 5
103
Bibliography
104
3 John Cardy. Reaction-diffusion processes 108
3.1 Introduction
108
3.2 Brownian motion
108
3.2.1 The Einstein relation
109
3.2.2 Correlation function
110
3.2.3 Response function
110
3.3 More general Langevin equations
111
3.3.1 The response function formalism
111
3.3.2 The master equation
113
3.3.3 Detailed balance
114
3.4 Stochastic particle systems
114
3.4.1 Particles hopping on a lattice
116
3.4.2 Two particle annihilation
116
3.4.3 Averages of observables in the many-body formalism
117
3.4.4 The Doi shift
118
3.4.5 Path integral representation
118
3.4.6 The expected number of particles and the expectation value of
121
3.5 Feynman diagrams and the renormalization group
121
3.5.1 The critical dimension
127
3.6 Other reaction-diffusion processes
128
3.6.1 A + B —- 0
128
3.6.2 A + A C
130
3.7 Reaction-diffusion and turbulence (Connaughton, Rajesh, Zaboronski)
132
3.7.1 Cluster-cluster aggregation: model and continuum description
133
3.7.2 Self-similar theory
135
3.7.3 The conservation of mass and the counterpart of Kolmogorov 4/5-th law.
138
3.7.4 Higher order correlation functions
140
3.7.5 Refined self similarity
142
3.8 Exercises
143
3.8.1 Problems
143
3.8.2 Solutions
144
Bibliography
160
John Cardy is Senior Research Fellow at All Souls College, Oxford, and Professor of Physics at University of Oxford. Gregory Falkovich is Professor and Department Head of Physics of Complex Systems at the Weizmann Institute of Science. Oleg V. Zaboronski is a Reader in the Department of Mathematics at the University of Warwick.