Atnaujinkite slapukų nuostatas

Noncontact Atomic Force Microscopy 2002 ed. [Kietas viršelis]

Edited by , Edited by , Edited by
  • Formatas: Hardback, 440 pages, aukštis x plotis: 235x155 mm, weight: 936 g, XVIII, 440 p., 1 Hardback
  • Serija: NanoScience and Technology
  • Išleidimo metai: 24-Jul-2002
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3540431179
  • ISBN-13: 9783540431176
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 440 pages, aukštis x plotis: 235x155 mm, weight: 936 g, XVIII, 440 p., 1 Hardback
  • Serija: NanoScience and Technology
  • Išleidimo metai: 24-Jul-2002
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3540431179
  • ISBN-13: 9783540431176
Kitos knygos pagal šią temą:
Since 1995, the noncontact atomic force microscope (NC-AFM) has achieved remarkable progress. Based on nanomechanical methods, the NC-AFM detects the weak attractive force between the tip of a cantilever and a sample surface. This method has the following characteristics: it has true atomic resolution; it can measure atomic force interactions, i.e. it can be used in so-called atomic force spectroscopy (AFS); it can also be used to study insulators; and it can measure mechanical responses such as elastic deformation. This is the first book that deals with all of the emerging NC-AFM issues.

Recenzijos

"This book gives a comprehensive overview of the state-of-the-art of this dynamic force microscopy technique in 20 chapters, each written by experts in the field. It covers the theoretical basis, as well as applications to semiconducting surfaces, ionic crystals, metal oxides, and organic molecular systems including thin films, polymers, and nucleic acids . . . There are unsolved questions about the mechanisms responsible for atomic resolution but, as this well-written book displays, there has been tremendous progress in basic understanding of the technique and fascinating new applications continue to arise . . . With an increased understanding of NC-AFM, as demonstrated in this book, we are certain to see further progress in the near future."



Materials Today

Daugiau informacijos

Springer Book Archives
Introduction
1(10)
Seizo Morita
AFM in Retrospective
1(3)
Present Status of NC-AFM
4(4)
Future Prospects for NC-AFM
8(3)
References
10(1)
Principle of NC-AFM
11(36)
Franz J. Giessibl
Basics
11(9)
Relation to the Scanning Tunneling Microscope (STM)
11(4)
Atomic Force Microscope (AFM)
15(3)
Operating Modes of AFMs
18(2)
Scanning Speed, Signal Bandwidth and Noise
20(1)
The Four Additional Challenges Faced by AFM
20(2)
Jump-to-Contact and Other Instabilities
21(1)
Contribution of Long-Range Forces
21(1)
Noise in the Imaging Signal
22(1)
Non-Monotonic Imaging Signal
22(1)
Frequency-Modulation AFM (FM-AFM)
22(7)
Experimental Setup
22(4)
Applications
26(3)
Relation between Frequency Shift and Forces
29(5)
Generic Calculation
29(3)
Frequency Shift for a Typical Tip--Sample Force
32(1)
Calculation of the Tunneling Current for Oscillating Tips
33(1)
Noise in Frequency-Modulation AFM
34(5)
Generic Calculation
34(1)
Noise in the Frequency Measurement
34(4)
Optimal Amplitude for Minimal Vertical Noise
38(1)
A Novel Force Sensor Based on a Quartz Tuning Fork
39(2)
Quartz Versus Silicon as a Cantilever Material
39(1)
Benefits in Clamping One of the Beams (qPlus Configuration)
40(1)
Conclusion and Outlook
41(6)
References
43(4)
Semiconductor Surfaces
47(32)
Seizo Morita
Yasuhiro Sugawara
Instrumentation
47(1)
Three-Dimensional Mapping of Atomic Force
48(4)
Control of Atomic Force
52(3)
Imaging Mechanisms for Si(100)2x1 and Si(100)2x1:H
55(3)
Surface Strain on an Atomic Scale
58(2)
Low Temperature Image of Si(100) Clean Surface
60(1)
Mechanical Control of Atom Position
61(4)
Atom Identification Using Covalent Bonding Force
65(3)
Charge Imaging with Atomic Resolution
68(6)
Mechanical Atom Manipulation
74(5)
References
76(3)
Bias Dependence of NC-AFM Images and Tunneling Current Variations on Semiconductor Surfaces
79(14)
Toyoko Arai
Masahiko Tomitori
Experimental Conditions
79(1)
Bias Dependence of NC-AFM Images for Si(111)7x7
80(8)
Mechanism of Inverted Atomic Corrugation
81(3)
NC-AFM Imaging and Tunneling Current
84(4)
NC-AFM Images for Ge/Si(111)
88(3)
Concluding Remarks
91(2)
References
92(1)
Alkali Halides
93(16)
Roland Bennewitz
Martin Bammerlin
Ernst Meyer
Introduction
93(2)
Experimental Techniques
93(1)
Relevant Forces
94(1)
Imaging of Single Crystals
95(3)
Sample Preparation
95(1)
Atomic Corrugation
96(1)
Imaging of Defects
97(1)
Mixed Alkali Halide Crystals
98(1)
Imaging of Thin Films
98(3)
Preparation of Thin Films
99(1)
Atomic Resolution at Low-Coordinated Sites
100(1)
Radiation Damage
101(2)
Metallization and Bubble Formation in CaF2
101(1)
Monatomic Pits in KBr
102(1)
Dissipation Measurements
103(6)
Material and Site-Specific Contrast
104(1)
Using Damping for Distance Control
105(1)
References
106(3)
Atomic Resolution Imaging on Fluorides
109(16)
Michael Reichling
Clemens Barth
Experimental Techniques
110(1)
Tip Instabilities
111(4)
Flat Surfaces
115(4)
Step Edges
119(6)
References
122(3)
Atomically Resolved Imaging of a NiO(001) Surface
125(10)
Hirotaka Hosoi
Kazuhisa Sueoka
Kazunobu Hayakawa
Koichi Mukasa
Antiferromagnetic Nickel Oxide
125(2)
Experimental Considerations
127(1)
Morphology of the Cleaved Surface
128(1)
Atomically Resolved Imaging Using Non-Coated and Fe-Coated Si Tips
129(1)
Short-Range Magnetic Interaction
130(1)
Analysis of the Cross-Section
131(2)
Conclusion
133(2)
References
134(1)
Atomic Structure, Order and Disorder on High Temperature Reconstructed α-Al2O3(0001)
135(12)
Clemens Barth
Michael Reichling
The Clean Surface
137(2)
Defect Formation upon Water Exposure
139(2)
Self-Organized Formation of Nanoclusters
141(6)
References
143(4)
NC-AFM Imaging of Surface Reconstructions and Metal Growth on Oxides
147(20)
Chi Lun Pang
Geoff Thornton
Introduction
147(1)
1x1 to 1x3 Phase Transition of TiO2(100)
148(3)
Surface Reconstructions of TiO2(110)
151(3)
The 1x2 Reconstruction of SnO2(110)
154(1)
Imaging Thin Film Alumina: NiAl(110)-Al2O3
155(3)
Growth of Cu and Pd on α-Al2O3(0001)-√31 x √31R±9°
158(2)
A Short-Range-Ordered Overlayer of K on TiO2(110)
160(2)
Conclusions
162(5)
References
163(4)
Atoms and Molecules on TiO2(110) and CeO2(111) Surfaces
167(16)
Ken-ichi Fukui
Yasuhiro Iwasawa
Background
167(1)
Brief Description of Experiments
168(1)
Surface Structures of TiO2(110)
169(1)
Adsorbed Atoms and Molecules on TiO2(110)
170(3)
Carboxylate Ions on TiO2(110)
170(2)
Hydrogen Adatoms on TiO2(110)
172(1)
Fluctuation of Acetate Ions on TiO2(110)
173(2)
Surface Structures of CeO2(111)
175(3)
Conclusions
178(5)
References
179(4)
NC-AFM Imaging of Adsorbed Molecules
183(10)
Yasuhiro Sugawara
Nucleic Acid Bases on a Graphite Surface
183(4)
Double-Stranded DNA on a Mica Surface
187(2)
Alkanethiol on a Au(111) Surface
189(4)
References
191(2)
Organic Molecular Films
193(22)
Hirofumi Yamada
AFM Imaging of Molecular Films
194(10)
Fullerenes
195(3)
Alkanethiol SAMs
198(2)
Ferroelectric Molecular Films
200(4)
Surface Potential Measurements
204(5)
Technical Developments in NC-AFM Imaging of Molecules
209(2)
Concluding Remarks
211(4)
References
212(3)
Single-Molecule Analysis
215(18)
Akira Sasahara
Hiroshi Onishi
Introduction
215(1)
Molecules and Surface
216(1)
Experimental Methods
217(1)
Alkyl-Substituted Carboxylates
218(3)
Numerical Simulation of Propiolate Topography
221(5)
Sphere--Substrate Force
223(1)
Sphere--Carboxylate Force
223(1)
Cluster--Substrate Force
224(1)
Cluster--Carboxylate Force
224(1)
Simulated Topography
224(2)
Fluorine-Substituted Acetates
226(3)
Conclusions and Perspectives
229(4)
References
230(3)
Low-Temperature Measurements: Principles, Instrumentation, and Application
233(24)
Wolf Allers
Alexander Schwarz
Udo D. Schwarz
Introduction
233(1)
Microscope Operation at Low Temperatures
234(3)
Drift
234(2)
Noise
236(1)
Instrumentation
237(2)
Van der Waals Surfaces
239(3)
HOPG(0001)
240(1)
Xenon
241(1)
Nickel Oxide
242(2)
Semiconductors
244(5)
Δf(z) Curves on Specific Atomic Sites
244(2)
Tip-Dependent Atomic Scale Contrast
246(2)
Tip-Induced Relaxation
248(1)
Magnetic Force Microscopy at Low Temperatures
249(3)
MFM Data Acquisition
249(1)
Domain Structure of La0.7Ca0.3MnO3--δ
250(1)
Vortices on YBa2Cu3O7--δ
251(1)
Conclusions
252(5)
References
253(4)
Theory of Non-Contact Atomic Force Microscopy
257(22)
Masaru Tsukada
Naruo Sasaki
Michel Gauthier
Katsunori Tagami
Satoshi Watanabe
Introduction
257(2)
Cantilever Dynamics
259(3)
Theoretical Simulation of NC-AFM Images
262(5)
Non-Contact Atomic Force Microscopy Images of Dynamic Surfaces
267(3)
Effect of Tip on Image for the Si(100)2x1:H Surface
270(4)
Effect of Tip on Surface Structure Change and its Relation to Dissipation
274(3)
Conclusion and Outlook
277(2)
References
278(1)
Chemical Interaction in NC-AFM on Semiconductor Surfaces
279(26)
San-Huang Ke
Tsuyoshi Uda
Kiyoyuki Terakura
Ruben Perez
Ivan Stich
Introduction
279(1)
First-Principles Calculation of Tip--Surface Chemical Interaction
280(1)
Simulation of NC-AFM Images
281(3)
Simulations on Various Surfaces
284(2)
Tip-Induced Surface Relaxation on the GaAs(110) Surface
286(7)
Vertical Scan Over an As Atom
286(2)
Vertical Scan Over a Ga Atom
288(3)
Relevance to Near-Contact STM Observations
291(2)
Tip-Induced Surface Atomic Processes and Energy Dissipation in NC-AFM
293(1)
Image Contrast on GaAs(110) for a Pure Si Tip: Distance Dependence
293(4)
Effect of Tip Morphology on NC-AFM Images
297(5)
Image Contrast for the Ga/Si Tip
299(2)
Image Contrast for the As/Si Tip
301(1)
Conclusion
302(3)
References
303(2)
Contrast Mechanisms on Insulating Surfaces
305(44)
Adam Foster
Alexander Shluger
Clemens Barth
Michael Reichling
Introduction
305(1)
Model of AFM and Main Forces
306(7)
Tip--Surface Setup
306(1)
Forces
307(6)
Simulating Scanning
313(7)
The Surface
313(1)
The Tip
314(3)
Tip--Surface Interaction
317(2)
Modelling Oscillations
319(1)
Generating a Theoretical Surface Image
320(1)
Applications
320(21)
The Calcium Fluoride (111) Surface
322(14)
Calcite: Surface Deformations During Scanning
336(5)
Studying Surface and Defect Properties
341(2)
Conclusions
343(6)
References
344(5)
Analysis of Microscopy and Spectroscopy Experiments
349(22)
Hendrik Holscher
Introduction
349(1)
Basic Principles
349(6)
Experimental Setup
349(2)
Origin of the Frequency Shift
351(1)
Calculation of the Frequency Shift
352(2)
Frequency Shift for Conservative Tip--Sample Forces
354(1)
Simulation of NC-AFM Images
355(7)
Experimental NC-AFM Images of van der Waals Surfaces
355(3)
Basic Principles of the Simulation Method
358(2)
Applications of the Simulation Method
360(2)
Dynamic Force Spectroscopy
362(5)
Determining Forces from Frequencies
362(4)
Analysis of Tip--Sample Interaction Forces
366(1)
Conclusion
367(4)
References
368(3)
Theory of Energy Dissipation into Surface Vibrations
371(24)
Michel Gauthier
Lev Kantorovich
Masaru Tsukada
Introduction
371(1)
Possible Dissipation Mechanisms
372(3)
Adhesion Hysteresis
372(3)
Stochastic Dissipation
375(1)
Other Mechanisms
375(1)
Brownian Particle Mechanism of Energy Dissipation
375(7)
Brownian Particle
375(2)
Fluctuation--Dissipation Theorem
377(1)
Oscillating Tip as a Brownian Particle
378(2)
Energy Dissipated Per Oscillation Cycle
380(2)
Nonequilibrium Considerations for NC-AFM Systems
382(6)
Preliminary Remarks
382(1)
Mixed Quantum--Classical Representation
383(2)
Equation of Motion for the Tip
385(3)
Estimation of Dissipation Energies in NC-AFM
388(3)
Comparison with STM
391(1)
Conclusions and Future Directions
392(3)
References
393(2)
Measurement of Dissipation Induced by Tip--Sample Interactions
395(38)
H.J. Hug
A. Baratoff
Introduction
395(1)
Experimental Aspects of Energy Dissipation
396(2)
Experimental Methods
398(1)
Apparent Energy Dissipation
399(5)
Velocity-Dependent Dissipation
404(9)
Electric-Field-Mediated Joule Dissipation
405(3)
Magnetic-Field-Mediated Joule Dissipation
408(1)
Magnetic-Field-Mediated Dissipation
409(3)
Brownian Dissipation
412(1)
Hysteresis-Related Dissipation
413(6)
Magnetic-Field-Induced Hysteresis
413(2)
Hysteresis Due to Adhesion
415(1)
Hysteresis Due to Atomic Instabilities
416(3)
Dissipation Imaging with Atomic Resolution
419(7)
Dissipation Spectroscopy
426(3)
Conclusion
429(4)
References
429(4)
Index 433