Atnaujinkite slapukų nuostatas

El. knyga: Nondestructive Materials Characterization: With Applications to Aerospace Materials

  • Formatas: PDF+DRM
  • Serija: Springer Series in Materials Science 67
  • Išleidimo metai: 21-Nov-2013
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Kalba: eng
  • ISBN-13: 9783662089880
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Serija: Springer Series in Materials Science 67
  • Išleidimo metai: 21-Nov-2013
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Kalba: eng
  • ISBN-13: 9783662089880
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Nondestructive Evaluation (NDE) becomes a key discipline for modem technology. Information about materials defects and properties is significant to guarantee reliability of a product and avoid fatal accidents. For instance technologies with high safety requirements like aviation, automotive, and energy production are driving forces for NDE. Keeping in mind that aging of the infrastructure is an issue in all industrial countries and that, for example, an aircraft can have a lifetime of several decades poses new challenges for NDE and especially nondestructive materials characterization. Besides the traditional in­ field applications, NDE becomes more and more a tool to study materials degradation processes and to provide engineers with input data for sophisticated models describing materials behavior and the life of components. At present, this marriage of NDE and materials modeling shows significant success in predicting damage progression (corrosion, fatigue) and thus an enhancement of availability and reliability of components and complete aircraft. This book will give a snapshot of the present research in materials characterization of aging aircraft. Methods considered are x-ray, ultrasonic, optical and thermal techniques and in particular techniques with high spatial resolution to detect and quantify early stages of degradation or to characterize materials microstructure. Every chapter briefly describes the basics and the principles of one NDE method under consideration. Discussing recent research results by applying these methods completes the chapters. The readers will get an overview of the present state of the art of materials characterization techniques.

Recenzijos

From the reviews:









"This book describes techniques for the material characterisation to detect and quantify degradation processes such as corrosion and fatigue. Emphasis is made on aircraft materials. It demonstrates the potential of the techniques for a wide variety of applications concerning aircraft materials, especially aluminum and titanium alloys and polymer coatings. It is suitable as a textbook in special training courses in advanced NDE and aircraft materials characterisation." (Yvon Renotte, Physicalia Vol. 57 (3), 2005)



"Meyendorf and his fellow editors have collected together a series of descriptions of modern techniques, which could give early detection of crack or corrosion defects. the book is as a whole an interesting read, and should find itself a useful reference work for anyone working in this area, especially if they have an eye on future developments." (Dr. D.G. Bucknall, Contemporary Physics, Vol. 46 (2), 2005)



"With an emphasis on aircraft materials, this book describes techniques for the material characterization to detect and quantify degradation processes such as corrosion and fatigue. It is suitable as a textbook in special training courses in advanced NDE and aircraft materials characterization." (MP Materialprüfung, Vol. 47 (4), 2005)

Degradation of Aircraft Structures
1(25)
Introduction
1(1)
NDE Methods at a Glance
2(3)
Degradation of Aircraft Materials and NDE
5(18)
Corrosion Protective Coatings
5(4)
Corrosion
9(6)
Fatigue
15(6)
Fretting and Fretting Fatigue
21(2)
Introduction to the Next
Chapters
23(3)
References
24(2)
Optical Detection of Surface Damage
26(32)
Introduction
26(1)
Background
27(1)
Instrumentation and Method
28(1)
Applications
29(26)
Optical Quantification of Fretting Fatigue Damage
30(7)
Characterization of Localized Corrosion Damage and Its Role for Fatigue Crack Initiation
37(10)
Characterization of Crack Damage States in Titanium Alloys through Examination of the Surface Deformation Preceding the Crack Front
47(8)
Conclusions
55(3)
References
56(2)
Microradiographic and Foil Penetration Methods for Quantification of Localized Corrosion
58(55)
Introduction
58(1)
Background
59(2)
Microradiographic System
61(2)
Microradiographic Methods
63(36)
Microradiographic Methods Evaluation
63(11)
Microradiography of Corrosion Samples
74(2)
Microradiographic Methods for Pit Depth Measurement
76(3)
Validation of Microradiographic Pit Depth Measurement
79(12)
Microradiographic Characterization of Fatigue Cracks Initiated by Corrosion Pits
91(4)
Phase-Contrast Image Enhancement with Microradiography
95(4)
Foil Penetration Method
99(2)
Application of Microradiography for Studying Localized Corrosion
101(9)
Microradiographic Analysis of Corroded Foil Penetration Samples
101(4)
In Situ Microradiography of Localized Corrosion Growth
105(5)
Summary and Conclusions
110(3)
References
112(1)
Interferometric and Holographic Imaging of Surface Wave Patterns for Characterization of Material Degradation
113(29)
Introduction
113(1)
Background
114(13)
Ultrasonic Nondestructive Evaluation (NDE)
114(2)
Surface Acoustic Waves (SAW)
116(3)
Ultrasonic Reflection and Scattering from Microcracks
119(3)
Local Ultrasonic Scattering from Surface-Breaking Cracks
122(3)
Optical Interferometry and Holography
125(2)
Instrumentation and Methods
127(1)
Near-Field Scanning Interferometry (NFSI) System
127(1)
Frequency Translated Holography (FTH) System
128(1)
Applications
128(11)
Interferometric and Holographic Imaging of Surface Waves
130(1)
Local Ultrasonic Scattering from Surface-Breaking Cracks
131(2)
Crack-Depth Determination
133(3)
In Situ Stress-Corrosion Crack (SCC) Growth Measurements
136(3)
Future Trends
139(3)
References
140(2)
Surface Acoustic Wave Characterization of Pitting Corrosion Damage with Fatigue Crack
142(38)
Introduction
142(2)
Background
144(1)
Instrumentation and Methods
145(12)
Experiments
145(2)
Fatigue Crack Growth Analysis
147(5)
Analysis of Surface Wave Scattering for Crack Sizing
152(5)
Applications
157(19)
Pit Size Measurements
157(3)
Ultrasonic Sizing of Crack Initiated from a Pit
160(12)
Fatigue Life Prediction
172(4)
Future Trends
176(4)
References
177(3)
Ultrasonic Fatigue Crack Detection in Aluminum and Titanium Alloys
180(26)
Introduction
180(2)
Background (Crack-Closure)
182(3)
Instrumentation and Methods
185(8)
Thermo-Optical Modulation
185(2)
The Role of Thermal Diffusivity
187(6)
Applications
193(11)
Dynamic Thermo-Optical Modulation in Al-2024
193(5)
Quasi-static Thermo-Optical Modulation in Ti-6A1-4V
198(6)
Conclusions
204(2)
References
205(1)
Early Detection of Fatigue Damage in Ti-6A1-4V with Nonlinear Acoustics
206(28)
Introduction
206(1)
Background
207(2)
Linear Acoustic Measurements and Fatigue
207(1)
Nonlinear Acoustics in Fatigue Damage Measurement
207(2)
Methods
209(7)
General Description
209(1)
Capacitive Detector Method
210(3)
Piezoelectric Method
213(1)
In Situ Measurement
214(2)
Applications
216(18)
Material and Sample Description
216(1)
Interrupted Fatigue Measurements (Low Cycle Fatigue)
217(3)
In Situ Measurement
220(3)
Discussion of Interrupted and Continuous Measurement Results
223(1)
Local Damage Measurements
224(6)
Summary and Conclusions
230(2)
References
232(2)
Ultrasonic Absorption Measurements
234(12)
Introduction
234(1)
Background
234(3)
Method
237(1)
Laser Ultrasound
237(1)
Contact Ultrasound
237(1)
Applications
238(4)
Future Trends
242(4)
References
244(2)
Thermographic Materials Characterization
246(40)
Introduction
246(1)
Background
246(5)
Thermal Wave and Thermal Diffusion Techniques
246(3)
Mechanically Induced Heat
249(2)
Infrared Cameras for NDE
251(2)
Methods
253(1)
Applications
254(32)
Passive Infrared Imaging of Defects through Organic Coating
254(2)
Pulsed Thermography for Detection of Subsurface Defects
256(1)
Fan Thermography for Imaging of Corrosion under Coatings
257(4)
Mechanically Induced Dissipated Heat Analysis (MIDA) - High Stress Excitation
261(11)
Fatigue Characterization by Mechanically Induced Dissipated Heat Analysis (MIDA) - Ultrasonic Excitation
272(4)
Thermographic NDE Based on Heat Dissipation -- Summary and Conclusion
276(7)
References
283(3)
Scanning Vibrating Electrode Technique as a Benchmark for NDE of Corrosion
286(8)
Introduction
286(1)
Background
287(1)
Instrumentation
288(2)
Applications
290(4)
References
292(2)
Acoustic Imaging Techniques for Characterization of Corrosion, Corrosion Protective Coatings, and Surface Cracks
294(29)
Introduction
294(1)
Background
294(2)
Instrumentation
296(3)
Scanning Acoustic Microscope (SAM)
297(1)
High Frequency Scanning Acoustic Microscopy (HF-SAM)
298(1)
Methods
299(5)
Acoustic Imaging
299(3)
Determination of Elastic Properties
302(2)
Applications
304(19)
Characterization of Corrosion
304(9)
Characterization of Corrosion Protective Coatings
313(6)
Microcrack Detection of Fatigued Material Using HF SAM
319(3)
References
322(1)
Scanning Probe Microscopy: Ultrasonic Force and Scanning Kelvin Probe Force Microscopy
323(33)
Introduction
323(1)
Background and Instrumentation
323(2)
Methods
325(2)
Application of the Methods
327(29)
Imaging of Elastic Properties
327(13)
Scanning Kelvin Probe Force Microscopy and AFM Scratching for Studies of Corrosion
340(13)
References
353(3)
High Resolution Microellipsometry
356(18)
Introduction
356(1)
Background
356(2)
Instrumentation
358(5)
Imaging Microellipsometer
358(2)
Rotationally Symmetric Scanning Microellipsometer
360(3)
Applications
363(8)
Measurement of Resolved Features
363(3)
Measurement of Surface Features beyond Diffraction Limit
366(2)
Measurement of Axial Birefringence
368(2)
Measurement of Micro-Optical Components
370(1)
Future Trends
371(3)
References
372(2)
Positron Annihilation Spectroscopy (PAS)
374(39)
Introduction
374(1)
Background and Instrumentation
374(9)
Basis of the Method
374(2)
Positron Annihilation Lifetime Spectroscopy (PALS)
376(3)
Doppler-Broadening of Annihilation Radiation (DBAR)
379(2)
Slow Positron Beam Techniques
381(2)
Interaction of Positrons with Lattice Defects and Precipitates
383(6)
Change of the Annihilation Parameters Due to Positron Trapping at Defects
383(2)
Kinetics of Positron Trapping
385(4)
Applications
389(24)
Characterization of Plastic Deformation of Stainless Steel
389(3)
Characterization of Fatigue in Ti-6A1-4V
392(3)
Precipitation Phenomena in Aluminum Alloys
395(4)
Characterization of Polymers and Polymer Composites
399(6)
Characterization of Polymer Coatings
405(4)
References
409(4)
Index 413