Atnaujinkite slapukų nuostatas

El. knyga: Nonequilibrium Thermodynamics: Transport and Rate Processes in Physical & Biological Systems

(University of NebraskaLincoln, Nebraska, United States), (Virginia Tech, Virginia, USA)
  • Formatas: PDF+DRM
  • Išleidimo metai: 22-Nov-2002
  • Leidėjas: Elsevier Science Ltd
  • Kalba: eng
  • ISBN-13: 9780080479729
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Išleidimo metai: 22-Nov-2002
  • Leidėjas: Elsevier Science Ltd
  • Kalba: eng
  • ISBN-13: 9780080479729
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

The book begins with a brief review of equilibrium systems and transport and rate processes, then covers the following areas: theory of nonequilibrium thermodynamics; dissipation function; entropy and exergy; analysis and case studies on using the second law of thermodynamics; economic impact of the nonequilibrium thermodynamics theory; analysis of transport and rate processes; membrane transport; dissipative structures and biological systems; and other thermodynamic approaches and extended nonequilibrium thermodynamics.

· Summarizes new applications of thermodynamics as tools for design and optimisation
· Covers second law and exergy analysis for sustainable development
· Promotes understanding of the coupled phenomena of natural processes
Preface x
Equilibrium thermodynamics
1(23)
Basic definitions
1(1)
Reversible and irreversible processes
2(2)
Equilibrium
4(2)
Fundamental equations
5(1)
Thermodynamic equilibrium
6(1)
Thermodynamic laws
6(4)
The zeroth law of thermodynamics
6(1)
The first law of thermodynamics
7(1)
The second law of thermodynamics
8(2)
Entropy and entropy production
10(4)
The Gibbs equation
14(3)
Equations of state
17(1)
Thermodynamic potentials
18(6)
Cross relations
19(3)
Extremum principles
22(1)
References
23(1)
Transport and rate processes
24(35)
Introduction
24(1)
Nonequilibrium systems
25(3)
Kinetic approach
28(1)
Transport phenomena
29(17)
Momentum transfer
30(7)
Heat transfer
37(4)
Mass transfer
41(5)
The Maxwell-Stefan equations
46(1)
Transport coefficients
47(1)
Electric charge flow
48(2)
The relaxation theory
50(1)
Chemical reactions
51(2)
Coupled processes
53(6)
References
58(1)
Linear nonequilibrium thermodynamics
59(25)
Introduction
59(1)
Local thermodynamic equilibrium
60(1)
Second law of thermodynamics
61(5)
Phenomenological equations
66(10)
Flows and forces
67(9)
Curie-Prigogine principle
76(1)
Dissipation function
76(4)
Variation of entropy production
80(4)
References
83(1)
Balance equations and entropy generation
84(18)
Introduction
84(11)
The mass balance equations
87(3)
The momentum balance equations
90(1)
The energy balance equations
91(3)
The entropy balance equations
94(1)
Entropy generation equation
95(7)
References
101(1)
Entropy and exergy
102(22)
Entropy
102(3)
Entropy balance
103(2)
Exergy
105(19)
Exergy balance
108(5)
Flow exergy
113(2)
Exergetic (second law) efficiency
115(4)
Chemical exergy
119(2)
Depletion number
121(2)
References
123(1)
Using the second law of thermodynamics
124(62)
Introduction
124(1)
Second law analysis
125(4)
Optimization problem
127(2)
Heat and fluid flow
129(22)
Case studies
131(20)
Heat and mass transfer
151(6)
Case studies
154(3)
Chemical reactions and reacting flows
157(11)
Case studies
160(8)
Separation
168(18)
Extraction
169(2)
Distillation
171(7)
Case studies
178(5)
References
183(3)
Thermoeconomics
186(20)
Introduction
186(1)
Thermodynamic analysis
187(2)
Thermodynamic optimum
189(11)
Exergy analysis
190(6)
Exhaustion of renewable resources
196(2)
Ecological cost
198(2)
Availability
200(1)
Exergy destruction number
201(1)
Equipartition and optimization
202(4)
References
205(1)
Diffusion
206(28)
Introduction
206(1)
Maxwell-Stefan diffusivity
207(13)
Diffusion in nonelectrolyte systems
220(2)
Diffusion in electrolyte systems
222(4)
Irreversible processes in electrolyte systems
226(8)
References
233(1)
Heat and mass transfer
234(25)
Introduction
234(1)
Heat and mass transfer
235(6)
Heat of transport
241(3)
Degree of coupling
244(1)
Coupling in liquid mixtures
245(14)
Coupling in binary liquid mixtures
246(6)
Coupling in ternary liquid mixtures
252(5)
References
257(2)
Chemical reactions
259(11)
Introduction
259(1)
Dissipation for chemical reactions
259(7)
Michaelis-Menten Kinetics
264(2)
Coupled chemical reactions
266(4)
Two-Reaction coupling
267(2)
References
269(1)
Membrane transport
270(23)
Introduction
270(1)
Passive transport
270(17)
Composite membranes
280(6)
Electrokinetic effect
286(1)
Facilitated transport
287(3)
Active transport
290(3)
References
291(2)
Thermodynamics and biological systems
293(63)
Introduction
293(1)
Mitochondria
294(4)
Bioenergetics in mitochondria
298(2)
Oxidative Phosphorylation
300(4)
Proper pathways
304(3)
Multiple inflection points
307(2)
Coupling in mitochondria
309(10)
Variation of coupling
317(2)
Thermodynamic regulation in bioenergetics
319(5)
Uncoupling
321(1)
Slipping
322(1)
Potassium channels
323(1)
Metabolic control analysis
323(1)
Facilitated transport
324(7)
Kinetic formulation
325(4)
Nonequilibrium thermodynamic approach
329(2)
Active transport
331(16)
Molecular evolution
347(1)
Molecular machines
348(2)
Evolutionary criterium
350(6)
References
352(4)
Other thermodynamic approaches
356(17)
Introduction
356(1)
Network thermodynamics with bond graph
356(11)
Transport processes
357(8)
Chemical processes
365(2)
Mosaic in nonequilibrium thermodynamics
367(2)
Rational thermodynamics
369(4)
References
372(1)
Extended nonequilibrium thermodynamics
373(22)
Introduction
373(1)
Stability
374(5)
Ordering in physical structures
379(4)
Ordering in convection
379(2)
Ordering in chemical reactions
381(2)
Ordering in biological structures
383(4)
Ordering in time: Biological clocks
383(4)
Bifurcation
387(2)
Extended nonequilibrium thermodynamics
389(6)
References
393(2)
Appendix 395(10)
Symbols 405(2)
Index 407


Dr. Yaar Demirel earned his PhD degree in Chemical Engineering from the University of Birmingham, UK in 1981. He carried out research and scholarly work at the University of Delaware between 1999 and 2001. He worked at Virginia Tech in Blacksburg as a visiting professor between 2002 and 2006. Currently, he is a professor in the Department of Chemical Biomolecular Engineering at the University of Nebraska, Lincoln. He has accumulated broad teaching and research experience over the years in diverse fields of engineering. Dr. Demirel authored and co-authored 11 books, four book chapters, and more than 170 research papers. The fourth edition of Nonequilibrium Thermodynamics was published in 2019. The third edition of the book titled Energy: Production, Conversion, Storage, Conservation, and Coupling” was published in 2021. He co-authored the book Sustainable Engineering” to be published in early 2023 by CRC Press, Taylor & Francis. He has obtained several awards and scholarships and presented invited seminars. Summarizes new applications of thermodynamics as tools for design and optimisation

Covers second law and exergy analysis for sustainable development

Promotes understanding of the coupled phenomena of natural processes