Atnaujinkite slapukų nuostatas

El. knyga: Nonlinear Combinatorial Optimization

Edited by , Edited by , Edited by

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Graduate students and researchers in applied mathematics, optimization, engineering,  computer science, and  management science will find this book a useful reference which provides an introduction to applications and fundamental theories in nonlinear combinatorial optimization. Nonlinear combinatorial optimization is a new research area within combinatorial optimization and includes numerous applications to technological developments, such as wireless communication, cloud computing, data science, and social networks. Theoretical developments including discrete Newton methods, primal-dual methods with convex relaxation, submodular optimization, discrete DC program, along with several applications are discussed and explored in this book through articles by leading experts. 

Recenzijos

Each chapter can be read by its own and does not assume knowledge from one of the other chapters. All in all, the book Nonlinear combinatorial optimization introduces some interesting topics in this relatively new field. (Isabel Beckenbach, zbMATH 1480.90209, 2022)

A role of minimum spanning tree.- Discrete Newton method.- An overview
of submodular optimization: single- and multi-objectives.- Discrete convex
optimization and applications in supply chain management.- Thresholding
methods for streaming submodular maximization with a cardinality
constraint and its variants.- Nonsubmodular optimization.- On
block-structured integer programming and its applications.- Online
combinatorial optimization problems with nonlinear objectives.- Solving
combinatorial problems with machine learning methods.- Modeling malware
propagation dynamics and developing prevention method in wireless sensor
networks.- Composed influence in social networks.- Friending.- Optimization
on content spread in social network studies.- Interation-aware influence
maximization in social networks.- Multi-document extractive summarization as
a nonlinear combinatorial optimization- Viral marketing for complementary
products.