Atnaujinkite slapukų nuostatas

El. knyga: Nonlinear Optics in Semiconductors I: Nonlinear Optics in Semiconductor Physics I

Series edited by (Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg, Germany), Volume editor (Dartmouth College, Hanover, New Hampshire), Volume editor (Hughes Research Laboratories, Malibu, California), Series edited by (WILLARDSON CONSULTING SPOKANE, WASHINGTON)
  • Formatas: PDF+DRM
  • Serija: Semiconductors and Semimetals
  • Išleidimo metai: 22-Oct-1998
  • Leidėjas: Academic Press Inc
  • Kalba: eng
  • ISBN-13: 9780080864563
  • Formatas: PDF+DRM
  • Serija: Semiconductors and Semimetals
  • Išleidimo metai: 22-Oct-1998
  • Leidėjas: Academic Press Inc
  • Kalba: eng
  • ISBN-13: 9780080864563

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The "Willardson and Beer" Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise that this tradition will be maintained and even expanded.
Reflecting the truly interdisciplinary nature of the field that the series covers, the volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in modern industry.
Preface xi List of Contributors xv Resonant Optical Nonlinearities in Semiconductors Alan Kost Introduction 2(1) Survey of Nonlinear Optical Mechanisms 3(5) State Filling 3(3) Coulomb Screening 6(1) Bandgap Renormalization 6(1) Broadening 6(1) Quantum Wells 7(1) Other Mechanisms 7(1) Modeling and Measuring Optical Nonlinearity 8(8) Simple Models 8(4) The Banyai-Koch Model 12(1) The Kramers-Kronig Relation 12(2) Nonlinear Transmission and Its Relation to Nonlinear Absorption and Refraction 14(2) Resonant Optical Nonlinearity in GaAs Quantum Wells 16(13) Sample Design and Fabrication 16(2) Linear Optical Absorption 18(1) Density-Dependent Absorption and Refractive Index 19(6) Intensity-Dependent Absorption 25(4) Summary of Band-Filling Nonlinearities 29(5) Bulk Semiconductors and Quantum Wells 29(2) Intersubband Absorption Saturation 31(1) Quantum Dots and Semiconductor Doped Glasses 32(1) Optical Modulators and Active Media 32(2) Figures of Merit 34(4) Optical Nonlinearity from Free Carrier Absorption and Refraction 38(6) Basic Equations 38(1) Nonlinear Optical Susceptibilities 39(2) Optical Switching of Microwaves 41(3) Optothermal Optical Nonlinearities 44(1) All-Optical Switching 45(4) The Optical Computer 45(1) The Nonlinear Fabry-Perot 45(2) Demonstrations of Optical Bistability and Optical Logic 47(2) Summary and Conclusions 49(7) List of Abbreviations and Acronyms 49(1) References 50(6) Optical Nonlinearities in Semiconductors Enhanced by Carrier Transport Elsa Garmire List of Acronyms 56(1) Introduction 56(7) Local Nonlinearities Enhanced by Carrier Transport 57(3) Nonlocal Nonlinearities 60(1) Figures of Merit 61(1)
Chapter Outline 62(1) Experimental Results on Optical Nonlinearities Influenced by Carrier Transport 63(23) Enhanced Nonlinearities Based on State Filling with Decreased Carrier Recombination Rates 64(10) Enhanced Nonlinearities Based on Photomodulation of Internal Fields 74(6) Combined Nonlinearities 80(1) Self-Modulation of External Fields 81(5) Field Dependence of the Optical Properties of Semiconductors 86(37) Absorption Spectra in Direct-Band Semiconductors 86(2) Franz-Keldysh Effect 88(2) Kramers-Kronig Relation: Electrorefraction 90(1) Quantum Confined Stark Effect 91(11) Advanced Quantum Confined Stark Concepts 102(11) QCSE at Other Wavelengths 113(9) Electrically Controlled State Filling 122(1) Experimental Configurations 123(23) Transmission 123(3) Absorption-Only Interferometer 126(1) Interferometer Based on Phase Shift 127(1) Fabry-Perot Geometries 128(11) Bragg Mirrors 139(7) Four-Wave Mixing 146(1) Characteristics of Experimental Devices that Utilize Self-Modulation 146(29) Speed of nipi Structures 147(2) Modeling Type nipi Structures 149(5) Picosecond Excitation of nipis 154(1) Lateral Enhanced Diffusion 155(1) Experimental Performance of nipis Inserted into Devices 156(4) References 160(15) Ultrafast Transient Nonlinear Optical Processes in Semiconductors D. S. Chemla Introduction 175(3) Near-Band-Gap Excitations 178(10) Time Scales and Dynamic Trends 188(10) A Purely Coherent Process Involving Only Virtual Electron-Hole Pairs: The Excitonic Optical Stark Effect 198(8) Fundamentals of Two-Particle Correlation Effects Involving Real Electron-Hole Pairs 206(12) Applications: Spectroscopy and Dynamics of Electronic States in Heterostructures 218(8) Fundamentals of Four-Particle Correlation Effects Involving Real Electron-Hole Pairs 226(13) Dynamics in the Quantum Kinetics Regime 239(9) Conclusion 248(11) List of Abbreviations and Acronyms 250(1) References 250(9) Optical Nonlinearities in the Transparency Region of Bulk Semiconductors Mansoor Sheik-Bahae Eric W. Van Stryland Introduction 259(1) Background 259(12) Nonlinear Absorption and Refraction 259(1) Nonlinear Polarization and the Definitions of Nonlinear Coefficients 259(12) Theory of Bound-Electronic Nonlinearities: Two-Band Model 271(13) Nondegenerate Nonlinear Absorption 271(6) Nondegenerate Nonlinear Refraction 277(6) Polarization Dependence and Anisotropy of X(3) 283(1) Bound-Electronic Optical Nonlinearities in Active Semiconductors 284(3) Free-Carrier Nonlinearities 287(6) Experimental Methods 293(15) Transmittance 294(1) Beam Distortion 294(2) Excite-Probe 296(1) Four-Wave Mixing 297(2) Interferometry 299(1) Z-Scan 300(2) Excite-Probe Z-Scan 302(4) Femtosecond Continuum Probe 306(1) Interpretation 307(1) Applications 308(3) Ultrafast All-Optical Switching Using Bound-Electronic Nonlinearities 308(1) Optical Limiting 309(2) Conclusion 311(9) List of Abbreviations and Acronyms 313(1) References 314(6) Photorefractivity in Semiconductors James E. Millerd Mehrdad Ziari Afshin Partovi Introduction 320(1) Space-Charge Grating Formation 321(7) Plane-Wave Interference Model 321(2) Simplified Band Transport Model 323(1) Steady-State Solution 324(2) Linear Electro-Optic Effect 326(1) Other Dielectric Modulation Mechanisms 327(1) Beam Coupling 328(9) Coupled-Wave Equations 328(2) Spatial Frequency Dependence 330(2) Intensity Dependence 332(1) Temporal Response 333(3) Electron-Hole and Multidefect Interactions 336(1) Four-Wave Mixing 337(9) Degenerate Four-Wave Mixing 338(2) Diffraction Efficiency Measurements 340(2) Self-Pumped Phase Conjugation 342(2) Polarization Switching 344(2) Enhanced Wave-Mixing Techniques 346(18) DC Applied Fields 346(2) AC Fields 348(2) Moving Gratings 350(2) Temperature-Intensity Resonance 352(2) Near-Band-Edge Effects 354(7) Photorefractive Response at High Modulation Depths 361(2) Summary of Applied Field Techniques 363(1) Bulk Semiconductors 364(7) GaAs 365(1) InP 366(1) GaP 367(1) CdTe 367(1) ZnTe 367(2) CdS 369(1) Bulk II-VI Alloys 369(2) Multiple Quantum Wells 371(14) MQW-PR Devices Using the Quantum Confined Stark Effect 385 Elimination of the Deposited Layers and Substrate Removal in PR-MQWs 380(3) MQW-PR Using the Franz-Keldysh Effect 383(2) Selected Applications 385(18) Coherent Signal Detection (Adaptive Interferometer) 387(1) Optical Image Processing 387(1) Optical Correlators 388(3) Real-Time Holographic Interferometry 391(3) List of Abbreviations and Acronyms 394(1) References 395(8) Index 403(6) Contents of Volumes in this Series 409
Prof. Dr. Eicke R. Weber, Fraunhofer-Institut fur Solare Energiesysteme ISE, Freiburg, Germany