Preface |
|
xiii | |
|
|
1 | (26) |
|
1.1 Nonlinear Solid Dynamics |
|
|
1 | (2) |
|
1.2 One-Degree-of-Freedom Nonlinear Dynamic Behavior |
|
|
3 | (4) |
|
|
4 | (1) |
|
1.2.2 Leap-Frog Time Integration |
|
|
4 | (3) |
|
|
7 | (1) |
|
1.3 Two-Degrees-Of-Freedom Example |
|
|
7 | (20) |
|
1.3.1 Equations of Motion |
|
|
9 | (1) |
|
|
10 | (1) |
|
1.3.3 Time Integration - Stability |
|
|
11 | (3) |
|
|
14 | (4) |
|
1.3.5 Tangent Stiffness Matrix |
|
|
18 | (2) |
|
1.3.6 Mid-Point Rule Examples |
|
|
20 | (3) |
|
|
23 | (4) |
|
2 Dynamic Analysis of Three-Dimensional Trusses |
|
|
27 | (58) |
|
|
27 | (1) |
|
|
28 | (5) |
|
2.2.1 Truss Member -- Kinematics |
|
|
28 | (1) |
|
2.2.2 Truss Member -- Forces |
|
|
29 | (2) |
|
2.2.3 Dynamic Equilibrium of a Pin-Jointed Truss |
|
|
31 | (2) |
|
2.3 Dynamic Variational Principles |
|
|
33 | (6) |
|
2.3.1 Kinetic Energy, Potential Energy, and the Lagrangian |
|
|
33 | (2) |
|
|
35 | (2) |
|
2.3.3 Action Integral and Hamilton's Principle |
|
|
37 | (2) |
|
2.4 Time Integration Schemes |
|
|
39 | (14) |
|
2.4.1 Discrete Action Integral |
|
|
40 | (1) |
|
2.4.2 Leap-Frog Time Integration |
|
|
41 | (2) |
|
2.4.3 Mid-Point Time Integration |
|
|
43 | (7) |
|
2.4.4 Trapezoidal Time Integration |
|
|
50 | (3) |
|
2.5 Global Conservation Laws |
|
|
53 | (10) |
|
2.5.1 Conservation of Linear Momentum |
|
|
54 | (2) |
|
2.5.2 Conservation of Angular Momentum |
|
|
56 | (3) |
|
2.5.3 Conservation of Energy |
|
|
59 | (4) |
|
2.6 Hamiltonian Formulations |
|
|
63 | (16) |
|
2.6.1 Momentum Variables and the Hamiltonian |
|
|
64 | (2) |
|
2.6.2 Phase Space and Hamiltonian Maps |
|
|
66 | (3) |
|
2.6.3 The Simplectic Product |
|
|
69 | (3) |
|
2.6.4 Discrete Hamiltonian Maps and Simplectic Time Integrators |
|
|
72 | (7) |
|
|
79 | (6) |
|
|
79 | (2) |
|
|
81 | (2) |
|
|
83 | (2) |
|
3 Dynamic Equilibrium of Deformable Solids |
|
|
85 | (25) |
|
|
85 | (1) |
|
|
86 | (7) |
|
3.2.1 Motion, Velocity, and Acceleration |
|
|
86 | (1) |
|
3.2.2 External Forces, Inertial Forces, and Global Dynamic Equilibrium in Current and Reference Configurations |
|
|
87 | (2) |
|
3.2.3 Local Dynamic Equilibrium |
|
|
89 | (4) |
|
3.3 Principle Of Virtual Work And Conservation Of Global Variables |
|
|
93 | (9) |
|
3.3.1 Principle of Virtual Work in the Current Configuration |
|
|
94 | (1) |
|
3.3.2 Principle of Virtual Work in the Reference Configuration |
|
|
95 | (1) |
|
3.3.3 Conservation of Global Momentum Quantities |
|
|
96 | (3) |
|
3.3.4 Conservation of Energy |
|
|
99 | (3) |
|
3.4 The Action Integral And Hamilton's Principle |
|
|
102 | (8) |
|
|
103 | (1) |
|
3.4.2 The Action Integral and Hamilton's Principle |
|
|
103 | (5) |
|
|
108 | (2) |
|
4 Discretization and Solution |
|
|
110 | (47) |
|
|
110 | (1) |
|
4.2 Discretized Kinematics |
|
|
110 | (3) |
|
|
113 | (5) |
|
|
117 | (1) |
|
4.4 Discretized Dynamic Equilibrium Equations |
|
|
118 | (3) |
|
4.5 Kinetic Energy, Potential Energy, and the Lag Rang Ian |
|
|
121 | (2) |
|
|
121 | (1) |
|
4.5.2 Total Energy and the Lagrangian |
|
|
122 | (1) |
|
4.6 Newmark Time Integration Scheme |
|
|
123 | (11) |
|
4.6.1 Implementation of the Newmark Acceleration Corrector Method |
|
|
127 | (3) |
|
4.6.2 Alpha-Method Time Integration |
|
|
130 | (4) |
|
4.7 Variational Integrators |
|
|
134 | (9) |
|
4.7.1 Leap-Frog Time Integrator |
|
|
136 | (4) |
|
4.7.2 Mid-Point Time Integrator |
|
|
140 | (3) |
|
4.8 Global Conservation Laws |
|
|
143 | (14) |
|
4.8.1 Conservation of Linear Momentum |
|
|
144 | (2) |
|
4.8.2 Conservation of Angular Momentum |
|
|
146 | (5) |
|
4.8.3 Conservation of Total Energy |
|
|
151 | (4) |
|
|
155 | (2) |
|
5 Conservation Laws in Solid Dynamics |
|
|
157 | (22) |
|
|
157 | (1) |
|
5.2 The General Form Of A Conservation Law |
|
|
158 | (4) |
|
5.3 Total Lagrangian Conservation Laws In Solid Dynamics |
|
|
162 | (6) |
|
5.3.1 Conservation of Mass |
|
|
164 | (1) |
|
5.3.2 Conservation of Linear Momentum |
|
|
164 | (1) |
|
5.3.3 Conservation of Energy |
|
|
165 | (2) |
|
5.3.4 Geometric Conservation Law |
|
|
167 | (1) |
|
5.3.5 Summary of the Total Lagrangian Conservation Laws |
|
|
168 | (1) |
|
5.4 Updated Lagrangian and Eulerian Conservation Laws |
|
|
168 | (11) |
|
5.4.1 Updated Lagrangian Conservation Laws |
|
|
169 | (2) |
|
5.4.2 Eulerian Conservation Laws |
|
|
171 | (3) |
|
5.4.3 Eulerian Conservation of Mass and Momentum |
|
|
174 | (2) |
|
|
176 | (3) |
|
|
179 | (26) |
|
|
179 | (1) |
|
6.2 The First Law of Thermodynamics |
|
|
180 | (3) |
|
|
180 | (1) |
|
6.2.2 Temperature and Entropy |
|
|
181 | (2) |
|
6.3 The Second Law of Thermodynamics |
|
|
183 | (4) |
|
6.3.1 Entropy Production in Thermoelasticity |
|
|
183 | (1) |
|
6.3.2 Internal Dissipation and the Clausius-Duhem Inequality |
|
|
184 | (3) |
|
|
187 | (18) |
|
6.4.1 The Reference Configuration |
|
|
187 | (1) |
|
6.4.2 Energy-Temperature-Entropy Relationships |
|
|
188 | (3) |
|
6.4.3 Stress Evaluation in Thermoelasticity |
|
|
191 | (1) |
|
6.4.4 Isothermal Processes and the Helmholtz Free Energy |
|
|
192 | (3) |
|
6.4.5 Entropic Elasticity |
|
|
195 | (2) |
|
|
197 | (1) |
|
6.4.7 Distortional-Volumetric Energy Decomposition |
|
|
198 | (3) |
|
6.4.8 Mie--Gruneisen Equation of State |
|
|
201 | (1) |
|
|
202 | (3) |
|
7 Space And Time Discretization Of Conservation Laws In Solid Dynamics |
|
|
205 | (41) |
|
|
205 | (1) |
|
7.2 A Simple One-Dimensional System Of Conservation Laws |
|
|
206 | (16) |
|
7.2.1 Weak Form Equations and Stabilization |
|
|
209 | (6) |
|
7.2.2 Spatial Discretization |
|
|
215 | (3) |
|
7.2.3 Time Discretization |
|
|
218 | (3) |
|
7.2.4 The One-Dimensional Example |
|
|
221 | (1) |
|
7.3 A General Isothermal System Of Conservation Laws |
|
|
222 | (17) |
|
7.3.1 Three-Dimensional Weak Form Equations and Stabilization |
|
|
227 | (3) |
|
7.3.2 Three-Dimensional Spatial Discretization |
|
|
230 | (3) |
|
7.3.3 Time Discretization |
|
|
233 | (6) |
|
7.4 A General Thermoelastic System Of Conservation Laws |
|
|
239 | (7) |
|
7.4.1 Weak Form Equations and Stabilization |
|
|
241 | (1) |
|
7.4.2 Three-Dimensional Spatial Discretization: Entropy |
|
|
242 | (2) |
|
|
244 | (2) |
|
8 Computer Implementation For Displacement-Based Dynamics |
|
|
246 | (35) |
|
|
246 | (2) |
|
|
248 | (6) |
|
|
254 | (2) |
|
|
256 | (10) |
|
|
266 | (9) |
|
8.5.1 Two Dimensional Free Oscillating Pulsating Square |
|
|
266 | (2) |
|
8.5.2 Two Dimensional Free Oscillating Column |
|
|
268 | (3) |
|
8.5.3 Three-Dimensional Free Oscillating Twisting Column |
|
|
271 | (2) |
|
8.5.4 Three-Dimensional L-Shape Block |
|
|
273 | (2) |
|
8.6 Dictionary Of Main Variables |
|
|
275 | (3) |
|
8.7 Constitutive Strain Energy Equation Summary |
|
|
278 | (3) |
|
9 Computational Implementation For Conservation-Law-Based Explicit Fast Dynamics |
|
|
281 | (25) |
|
|
281 | (1) |
|
|
282 | (4) |
|
|
286 | (1) |
|
|
287 | (8) |
|
|
295 | (9) |
|
9.5.1 Three Dimensional Free Oscillating Bending Column |
|
|
295 | (1) |
|
9.5.2 Three-Dimensional Free Oscillating Twisting Column |
|
|
296 | (1) |
|
9.5.3 Three-Dimensional L-Shaped Block |
|
|
297 | (7) |
|
9.6 Dictionary of Main Variables |
|
|
304 | (2) |
|
|
306 | (20) |
|
|
306 | (1) |
|
A.2 Generic Spatial Jump Condition |
|
|
307 | (2) |
|
A.3 Jump Conditions in Total Lagrangian Solid Dynamics |
|
|
309 | (2) |
|
A.4 Speed of Propagation Of Volumetric and Shear Shocks |
|
|
311 | (3) |
|
A.5 Energy, Temperature, and Entropy Behind the Shock Wave |
|
|
314 | (4) |
|
A.6 Constitutive Models Derived from Shock Data |
|
|
318 | (3) |
|
A.7 Contact-Impact Conditions |
|
|
321 | (5) |
|
|
324 | (2) |
Bibliography |
|
326 | (3) |
Index |
|
329 | |