Preface |
|
xiii | |
1 Introduction |
|
1 | (20) |
|
1.1 Nonlinear Computational Mechanics |
|
|
1 | (1) |
|
1.2 Simple Examples Of Nonlinear Structural Behavior |
|
|
2 | (2) |
|
|
2 | (1) |
|
|
3 | (1) |
|
1.3 Nonlinear Strain Measures |
|
|
4 | (8) |
|
1.3.1 One-Dimensional Strain Measures |
|
|
4 | (2) |
|
1.3.2 Nonlinear Truss Example |
|
|
6 | (4) |
|
1.3.3 Continuum Strain Measures |
|
|
10 | (2) |
|
1.4 Directional Derivative, Linearization And Equation Solution |
|
|
12 | (7) |
|
1.4.1 Directional Derivative |
|
|
13 | (2) |
|
1.4.2 Linearization And Solution Of Nonlinear Algebraic Equations |
|
|
15 | (4) |
|
|
19 | (2) |
2 Mathematical Preliminaries |
|
21 | (38) |
|
|
21 | (1) |
|
2.2 Vector And Tensor Algebra |
|
|
21 | (24) |
|
|
22 | (4) |
|
2.2.2 Second-Order Tensors |
|
|
26 | (9) |
|
2.2.3 Vector And Tensor Invariants |
|
|
35 | (4) |
|
2.2.4 Higher-Order Tensors |
|
|
39 | (6) |
|
2.3 Linearization And The Directional Derivative |
|
|
45 | (9) |
|
2.3.1 One Degree Of Freedom |
|
|
45 | (1) |
|
2.3.2 General Solution To A Nonlinear Problem |
|
|
46 | (2) |
|
2.3.3 Properties Of The Directional Derivative |
|
|
48 | (1) |
|
2.3.4 Examples Of Linearization |
|
|
49 | (5) |
|
|
54 | (3) |
|
2.4.1 The Gradient And Divergence Operators |
|
|
54 | (2) |
|
2.4.2 Integration Theorems |
|
|
56 | (1) |
|
|
57 | (2) |
3 Analysis Of Three-Dimensional Truss Structures |
|
59 | (37) |
|
|
59 | (2) |
|
|
61 | (3) |
|
3.2.1 Linearization Of Geometrical Descriptors |
|
|
63 | (1) |
|
3.3 Internal Forces And Hyperelastic Constitutive Equations |
|
|
64 | (2) |
|
3.4 Nonlinear Equilibrium Equations And The Newton-Raphson Solution |
|
|
66 | (5) |
|
3.4.1 Equilibrium Equations |
|
|
66 | (1) |
|
3.4.2 Newton-Raphson Procedure |
|
|
67 | (1) |
|
3.4.3 Tangent Elastic Stiffness Matrix |
|
|
68 | (3) |
|
3.5 Total Potential Energy |
|
|
71 | (4) |
|
3.5.1 Principle Of Virtual Work |
|
|
72 | (3) |
|
3.6 Elasto-Plastic Behavior |
|
|
75 | (14) |
|
3.6.1 Multiplicative Decomposition Of The Stretch |
|
|
76 | (1) |
|
3.6.2 Rate-Independent Plasticity |
|
|
77 | (4) |
|
3.6.3 Incremental Kinematics |
|
|
81 | (2) |
|
|
83 | (1) |
|
3.6.5 Stress Update And Return Mapping |
|
|
84 | (3) |
|
3.6.6 Algorithmic Tangent Modulus |
|
|
87 | (1) |
|
3.6.7 Revised Newton-Raphson Procedure |
|
|
88 | (1) |
|
|
89 | (2) |
|
|
89 | (1) |
|
|
90 | (1) |
|
|
91 | (5) |
4 Kinematics |
|
96 | (41) |
|
|
96 | (1) |
|
|
96 | (1) |
|
4.3 Material And Spatial Descriptions |
|
|
97 | (2) |
|
|
99 | (3) |
|
|
102 | (4) |
|
|
106 | (6) |
|
|
112 | (1) |
|
4.8 Distortional Component Of The Deformation Gradient |
|
|
113 | (3) |
|
|
116 | (1) |
|
4.10 Linearized Kinematics |
|
|
117 | (2) |
|
4.10.1 Linearized Deformation Gradient |
|
|
117 | (1) |
|
|
118 | (1) |
|
4.10.3 Linearized Volume Change |
|
|
119 | (1) |
|
4.11 Velocity And Material Time Derivatives |
|
|
119 | (4) |
|
|
119 | (1) |
|
4.11.2 Material Time Derivative |
|
|
120 | (1) |
|
4.11.3 Directional Derivative And Time Rates |
|
|
121 | (1) |
|
|
122 | (1) |
|
|
123 | (3) |
|
|
126 | (3) |
|
4.14 Rate Of Change Of Volume |
|
|
129 | (1) |
|
4.15 Superimposed Rigid Body Motions And Objectivity |
|
|
130 | (2) |
|
|
132 | (5) |
5 Stress And Equilibrium |
|
137 | (21) |
|
|
137 | (1) |
|
|
137 | (5) |
|
|
137 | (4) |
|
|
141 | (1) |
|
|
142 | (3) |
|
5.3.1 Translational Equilibrium |
|
|
142 | (2) |
|
5.3.2 Rotational Equilibrium |
|
|
144 | (1) |
|
5.4 Principle Of Virtual Work |
|
|
145 | (1) |
|
5.5 Work Conjugacy And Alternative Stress Representations |
|
|
146 | (8) |
|
5.5.1 The Kirchhoff Stress Tensor |
|
|
146 | (1) |
|
5.5.2 The First Piola-Kirchhoff Stress Tensor |
|
|
147 | (3) |
|
5.5.3 The Second Piola-Kirchhoff Stress Tensor |
|
|
150 | (3) |
|
5.5.4 Deviatoric And Pressure Components |
|
|
153 | (1) |
|
|
154 | (2) |
|
|
156 | (2) |
6 Hyperelasticity |
|
158 | (30) |
|
|
158 | (1) |
|
|
158 | (2) |
|
|
160 | (2) |
|
6.3.1 The Material Or Lagrangian Elasticity Tensor |
|
|
160 | (1) |
|
6.3.2 The Spatial Or Eulerian Elasticity Tensor |
|
|
161 | (1) |
|
6.4 Isotropic Hyperelasticity |
|
|
162 | (6) |
|
6.4.1 Material Description |
|
|
162 | (1) |
|
6.4.2 Spatial Description |
|
|
163 | (2) |
|
6.4.3 Compressible Neo-Hookean Material |
|
|
165 | (3) |
|
6.5 Incompressible And Nearly Incompressible Materials |
|
|
168 | (7) |
|
6.5.1 Incompressible Elasticity |
|
|
168 | (2) |
|
6.5.2 Incompressible Neo-Hookean Material |
|
|
170 | (2) |
|
6.5.3 Nearly Incompressible Hyperelastic Materials |
|
|
172 | (3) |
|
6.6 Isotropic Elasticity In Principal Directions |
|
|
175 | (11) |
|
6.6.1 Material Description |
|
|
175 | (1) |
|
6.6.2 Spatial Description |
|
|
176 | (1) |
|
6.6.3 Material Elasticity Tensor |
|
|
177 | (2) |
|
6.6.4 Spatial Elasticity Tensor |
|
|
179 | (1) |
|
6.6.5 A Simple Stretch-Based Hyperelastic Material |
|
|
180 | (1) |
|
6.6.6 Nearly Incompressible Material In Principal Directions |
|
|
181 | (3) |
|
6.6.7 Plane Strain And Plane Stress Cases |
|
|
184 | (1) |
|
|
185 | (1) |
|
|
186 | (2) |
7 Large Elasto-Plastic Deformations |
|
188 | (26) |
|
|
188 | (1) |
|
7.2 The Multiplicative Decomposition |
|
|
188 | (5) |
|
|
193 | (4) |
|
7.4 Rate-Independent Plasticity |
|
|
197 | (2) |
|
|
199 | (4) |
|
7.6 Incremental Kinematics |
|
|
203 | (6) |
|
7.6.1 The Radial Return Mapping |
|
|
206 | (2) |
|
7.6.2 Algorithmic Tangent Modulus |
|
|
208 | (1) |
|
7.7 Two-Dimensional Cases |
|
|
209 | (3) |
|
|
212 | (2) |
8 Linearized Equilibrium Equations |
|
214 | (20) |
|
|
214 | (1) |
|
8.2 Linearization And The Newton-Raphson Process |
|
|
214 | (2) |
|
8.3 Lagrangian Linearized Internal Virtual Work |
|
|
216 | (1) |
|
8.4 Eulerian Linearized Internal Virtual Work |
|
|
217 | (2) |
|
8.5 Linearized External Virtual Work |
|
|
219 | (2) |
|
|
219 | (1) |
|
|
219 | (2) |
|
8.6 Variational Methods And Incompressibility |
|
|
221 | (11) |
|
8.6.1 Total Potential Energy And Equilibrium |
|
|
222 | (1) |
|
8.6.2 Lagrange Multiplier Approach To Incompressibility |
|
|
223 | (3) |
|
8.6.3 Penalty Methods For Incompressibility |
|
|
226 | (1) |
|
8.6.4 Hu-Washizu Variational Principle For Incompressibility |
|
|
227 | (2) |
|
8.6.5 Mean Dilatation Procedure |
|
|
229 | (3) |
|
|
232 | (2) |
9 Discretization And Solution |
|
234 | (26) |
|
|
234 | (1) |
|
9.2 Discretized Kinematics |
|
|
234 | (5) |
|
9.3 Discretized Equilibrium Equations |
|
|
239 | (3) |
|
|
239 | (2) |
|
9.3.2 Derivation In Matrix Notation |
|
|
241 | (1) |
|
9.4 Discretization Of The Linearized Equilibrium Equations |
|
|
242 | (9) |
|
9.4.1 Constitutive Component: Indicial Form |
|
|
244 | (1) |
|
9.4.2 Constitutive Component: Matrix Form |
|
|
245 | (1) |
|
9.4.3 Initial Stress Component |
|
|
246 | (1) |
|
9.4.4 External Force Component |
|
|
247 | (2) |
|
|
249 | (2) |
|
9.5 Mean Dilatation Method For Incompressibility |
|
|
251 | (2) |
|
9.5.1 Implementation Of The Mean Dilatation Method |
|
|
251 | (2) |
|
9.6 Newton-Raphson Iteration And Solution Procedure |
|
|
253 | (5) |
|
9.6.1 Newton-Raphson Solution Algorithm |
|
|
253 | (1) |
|
|
254 | (2) |
|
|
256 | (2) |
|
|
258 | (2) |
10 Computer Implementation |
|
260 | (56) |
|
|
260 | (3) |
|
|
263 | (6) |
|
10.3 Output File Description |
|
|
269 | (3) |
|
|
272 | (2) |
|
|
274 | (2) |
|
|
276 | (2) |
|
10.7 Master M-File Flagshyp |
|
|
278 | (7) |
|
10.8 Function residual_and_stiffness_assembly |
|
|
285 | (9) |
|
10.9 Function constitutive_matrix |
|
|
294 | (1) |
|
10.10 Function geometric_matrix |
|
|
295 | (1) |
|
10.11 Function pressure_load_and_stiffness_assembly |
|
|
296 | (2) |
|
|
298 | (8) |
|
10.12.1 Simple Patch Test |
|
|
298 | (1) |
|
|
299 | (1) |
|
10.12.3 Strip With A Hole |
|
|
300 | (1) |
|
10.12.4 Plane Strain Nearly Incompressible Strip |
|
|
300 | (2) |
|
|
302 | (1) |
|
10.12.6 Elasto-Plastic Cantilever |
|
|
303 | (3) |
|
10.13 Appendix: Dictionary Of Main Variables |
|
|
306 | (3) |
|
10.14 Appendix: Constitutive Equation Summary |
|
|
309 | (7) |
Bibliography |
|
316 | (2) |
Index |
|
318 | |