Atnaujinkite slapukų nuostatas

El. knyga: Nonlinear Water Waves: An Interdisciplinary Interface

Edited by , Edited by , Edited by , Edited by , Edited by
Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

The motion of water is governed by a set of mathematical equations which are extremely complicated and intractable. This is not surprising when one considers the highly diverse and intricate physical phenomena which may be exhibited by a given body of water. Recent mathematical advances have enabled researchers to make major progress in this field, reflected in the topics featured in this volume.





Cutting-edge techniques and tools from mathematical analysis have generated strong rigorous results concerning the qualitative and quantitative physical properties of solutions of the governing equations. Furthermore, accurate numerical computations of fully-nonlinear steady and unsteady water waves in two and three dimensions have contributed to the discovery of new types of waves. Model equations have been derived in the long-wave and modulational regime using Hamiltonian formulations and solved numerically.





This book brings together interdisciplinary researchers working in the field of nonlinear water waves, whose contributions range from survey articles to new research results which address a variety of aspects in nonlinear water waves. It is motivated by a workshop which was organised at the Erwin Schrödinger International Institute for Mathematics and Physics in Vienna, November 27-December 7, 2017. The key aim of the workshop was to describe, and foster, new approaches to research in this field. This is reflected in the contents of this book, which is aimed to stimulate both experienced researchers and students alike.
Modeling Surface Waves Over Highly Variable Topographies
1(18)
Andre Nachbin
Global Diffeomorphism of the Lagrangian Flow-map for a Pollard-like Internal Water Wave
19(16)
Mateusz Kluczek
Adrian Rodrfguez-Sanjurjo
The Unified Transform and the Water Wave Problem
35(18)
A. S. Fokas
K. Kalimeris
HOS Simulations of Nonlinear Water Waves in Complex Media
53(18)
Philippe Guyenne
Stokes Waves in a Constant Vorticity Flow
71(16)
Sergey A. Dyachenko
Vera Mikyoung Hur
Integrable Models of Internal Gravity Water Waves Beneath a Flat Surface
87(22)
Alan C. Compelli
Rossen I. Ivanov
Tony Lyons
Numerical Simulations of Overturned Traveling Waves
109(14)
Benjamin F. Akers
Matthew Seiders
A Model for the Periodic Water Wave Problem and Its Long Wave Amplitude Equations
123(16)
Roman Bauer
Patrick Cummings
Guido Schneider
On Recent Numerical Methods for Steady Periodic Water Waves
139(12)
Dominic Amann
Nonlinear Wave Interaction in Coastal and Open Seas: Deterministic and Stochastic Theory
151(32)
Raphael Stuhlmeier
Teodor Vrecica
Yaron Toledo
Gravity-Capillary and Flexural-Gravity Solitary Waves
183(18)
Emilian I. Parau
Jean-Marc Vanden-Broeck
A Method for Identifying Stability Regimes Using Roots of a Reduced-Order Polynomial
201
Olga Trichtchenko