Atnaujinkite slapukų nuostatas

El. knyga: Normal Forms, Melnikov Functions and Bifurcations of Limit Cycles

  • Formatas: PDF+DRM
  • Serija: Applied Mathematical Sciences 181
  • Išleidimo metai: 23-Apr-2012
  • Leidėjas: Springer London Ltd
  • Kalba: eng
  • ISBN-13: 9781447129189
  • Formatas: PDF+DRM
  • Serija: Applied Mathematical Sciences 181
  • Išleidimo metai: 23-Apr-2012
  • Leidėjas: Springer London Ltd
  • Kalba: eng
  • ISBN-13: 9781447129189

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Dynamical system theory has developed rapidly over the past fifty years. It is a subject upon which the theory of limit cycles has a significant impact for both theoretical advances and practical solutions to problems. Hopf bifurcation from a center or a focus is integral to the theory of bifurcation of limit cycles, for which normal form theory is a central tool. Although Hopf bifurcation has been studied for more than half a century, and normal form theory for over 100 years, efficient computation in this area is still a challenge with implications for Hilbert’s 16th problem.

This book introduces the most recent developments in this field and provides major advances in fundamental theory of limit cycles. Split into two parts, the first focuses on the study of limit cycles bifurcating from Hopf singularity using normal form theory with later application to Hilbert’s 16th problem, while the second considers near Hamiltonian systems using Melnikov function as the main mathematical tool.

Classic topics with new results are presented in a clear and concise manner and are accompanied by the liberal use of illustrations throughout. Containing a wealth of examples and structured algorithms that are treated in detail, a good balance between theoretical and applied topics is demonstrated. By including complete Maple programs within the text, this book also enables the reader to reconstruct the majority of formulas provided, facilitating the use of concrete models for study.

Through the adoption of an elementary and practical approach, this book will be of use to graduate mathematics students wishing to study the theory of limit cycles as well as scientists, across a number of disciplines, with an interest in the applications of periodic behavior.



This book introduces the recent developments in the field and provides major advances in fundamental theory of limit cycles. It considers near Hamiltonian systems using Melnikov function as the main mathematical tool.

Recenzijos

From the reviews:

This monograph written by excellent specialists in the fundamental theory of limit cycles represents an introduction to the most new developments and systematical presentation of major advances in this field which come mainly from the authors' own recent research results. Classic topics with recent results are presented in a clear and concise manner that will be suitable for post-graduate students studying the theory of limit cycles as well as for scientists interesting in the applications of periodic behavior. (Alexander Grin, Zentralblatt MATH, Vol. 1252, 2012)

This excellent book advances the theory of Limit Cyclesisolated periodic orbits that are sometimes referred to as self-sustained oscillations in the literature. This book stands out with worked-out examples galore and efficient and accessible algorithms on classical subjects . The authors aim at shedding new light on old settled results as well as introducing recent advances in the field. The book achieves both handsomely, through a highly readable and convincing exposition that harnesses the power of modern computational tools . (Bourama Toni, Mathematical Reviews, January, 2013)

Hopf Bifurcation and Normal Form Computation.- Comparison of Methods for
Computing Focus Values.- Application (I)Hilberts 16th Problem.- Application
(II)Practical Problems.- Fundamental Theory of the Melnikov Function
Method.- Limit Cycle Bifurcations Near a Center.- Limit Cycles Near a
Homoclinic or Heteroclinic Loop.- Finding More Limit Cycles Using Melnikov
Functions.- Limit Cycle Bifurcations in Equivariant Systems.