About the author |
|
xiii | |
Foreword |
|
xv | |
|
1 The atom and nuclear radiation |
|
|
1 | (1) |
|
|
1 | (5) |
|
|
5 | (1) |
|
|
6 | (1) |
|
|
6 | (2) |
|
|
8 | (1) |
|
|
9 | (1) |
|
|
10 | (1) |
|
1.2.4 Radioactive nuclides in nuclear technologies |
|
|
11 | (1) |
|
1.3 Interaction of radiation with matter |
|
|
12 | (12) |
|
1.3.1 Interaction of alpha rays with matter |
|
|
12 | (4) |
|
1.3.2 Interaction of beta radiation with matter |
|
|
16 | (3) |
|
1.3.3 Interaction of gamma radiation with matter |
|
|
19 | (5) |
|
1.4 Sources and effects of radiation |
|
|
24 | (6) |
|
|
26 | (1) |
|
|
26 | (1) |
|
|
27 | (1) |
|
|
28 | (1) |
|
1.4.5 Radiation safety limits |
|
|
28 | (1) |
|
1.4.6 Radiation detection |
|
|
29 | (1) |
|
1.5 Atomic densities of elements and mixtures |
|
|
30 | (4) |
|
1.6 Mathematical modeling and simulation |
|
|
34 | (10) |
|
1.6.1 Alpha particle transport simulation |
|
|
35 | (1) |
|
1.6.2 Interaction of electrons with matter |
|
|
35 | (5) |
|
1.6.3 Interaction of gamma radiation with matter |
|
|
40 | (1) |
|
1.6.4 Radiation dose from Calfornium-252 gamma source in water |
|
|
41 | (3) |
|
|
44 | (1) |
|
|
44 | (2) |
|
|
46 | (1) |
|
|
47 | (4) |
|
2 Interactions of neutrons with matter |
|
|
51 | (52) |
|
|
51 | (2) |
|
2.2 Types of neutron interactions |
|
|
53 | (5) |
|
2.2.1 Neutron scattering in the lab and center of mass systems |
|
|
55 | (3) |
|
2.3 The microscopic cross-section |
|
|
58 | (5) |
|
2.4 The macroscopic cross-section |
|
|
63 | (1) |
|
|
64 | (2) |
|
|
66 | (1) |
|
2.7 Neutron slowing down, diffusion and thermalization |
|
|
67 | (7) |
|
2.8 Resonance cross-section |
|
|
74 | (6) |
|
|
80 | (8) |
|
2.9.1 The fission process |
|
|
80 | (1) |
|
|
81 | (3) |
|
|
84 | (1) |
|
2.9.4 Number of neutrons emitted in fission |
|
|
84 | (1) |
|
2.9.5 Fissile and fertile materials |
|
|
85 | (1) |
|
2.9.6 The fission spectrum |
|
|
86 | (2) |
|
|
88 | (10) |
|
|
90 | (1) |
|
|
91 | (1) |
|
2.10.3 Monte Carlo simulation |
|
|
92 | (6) |
|
|
98 | (1) |
|
|
98 | (2) |
|
|
100 | (3) |
|
3 Nuclear reactors and systems |
|
|
103 | (46) |
|
3.1 Status of nuclear power |
|
|
103 | (4) |
|
3.1.1 Generations of nuclear power |
|
|
103 | (3) |
|
|
106 | (1) |
|
3.1.3 The future of the nuclear power industry |
|
|
106 | (1) |
|
3.2 Nuclear reactor systems |
|
|
107 | (9) |
|
3.2.1 Pressurized water reactor |
|
|
108 | (2) |
|
3.2.2 Boiling water reactor |
|
|
110 | (2) |
|
3.2.3 Pressurized heavy water reactor |
|
|
112 | (1) |
|
|
113 | (1) |
|
3.2.5 Fast breeder reactor |
|
|
114 | (2) |
|
3.3 Marine propulsion reactors |
|
|
116 | (4) |
|
|
116 | (1) |
|
3.3.2 US nuclear submarine program |
|
|
116 | (1) |
|
3.3.3 Former Soviet/Russian nuclear submarine program |
|
|
117 | (1) |
|
3.3.4 Submarine programs: UK, France, China, India and Pakistan |
|
|
117 | (1) |
|
3.3.5 Modern-day submarines |
|
|
117 | (1) |
|
|
118 | (2) |
|
3.3.7 HEU/LEU submarine reactors |
|
|
120 | (1) |
|
3.4 Plutonium production reactors |
|
|
120 | (1) |
|
3.5 Small modular reactors |
|
|
121 | (7) |
|
3.5.1 Design features of SMRs |
|
|
121 | (4) |
|
3.5.2 Very small modular reactor |
|
|
125 | (1) |
|
3.5.3 Generation-IV reactors |
|
|
125 | (2) |
|
3.5.4 Radiation source term |
|
|
127 | (1) |
|
|
128 | (4) |
|
3.6.1 The fusion reaction |
|
|
128 | (1) |
|
3.6.2 Magnetic confinement fusion |
|
|
129 | (1) |
|
3.6.3 Inertial confinement fusion |
|
|
130 | (2) |
|
|
132 | (6) |
|
3.7.1 Conventional rocket designs |
|
|
132 | (1) |
|
|
132 | (2) |
|
3.7.3 Nuclear rocket designs for deep space exploration |
|
|
134 | (4) |
|
3.8 Nuclear power systems in space |
|
|
138 | (3) |
|
3.8.1 Radioisotope thermal generators |
|
|
138 | (1) |
|
3.8.2 Small nuclear auxiliary power systems |
|
|
138 | (3) |
|
|
141 | (1) |
|
|
141 | (1) |
|
|
142 | (2) |
|
|
144 | (1) |
|
Annex: The physics of nuclear fusion |
|
|
145 | (4) |
|
4 Mathematical foundations |
|
|
149 | (62) |
|
4.1 Ordinary differential equations |
|
|
150 | (6) |
|
4.1.1 The Poisson equation: steady-state heat conduction in 1-D |
|
|
153 | (2) |
|
4.1.2 Coupled first-order ODEs: the point kinetics equations |
|
|
155 | (1) |
|
4.2 Partial differential equations |
|
|
156 | (9) |
|
4.2.1 Equations of fluid dynamics |
|
|
156 | (1) |
|
4.2.2 The 1-D time-dependent heat conduction |
|
|
157 | (1) |
|
4.2.3 Laplace equation: 2-D steady-state heat conduction |
|
|
158 | (1) |
|
4.2.4 Heat conduction in 2-D and 3-D |
|
|
159 | (5) |
|
|
164 | (1) |
|
|
165 | (5) |
|
4.3.1 An important integral equation for neutron transport |
|
|
169 | (1) |
|
4.3.2 Integral equations in neutron transport |
|
|
169 | (1) |
|
4.4 Integro-differential equations |
|
|
170 | (4) |
|
|
174 | (11) |
|
4.5.1 The Finite Difference Method |
|
|
174 | (4) |
|
4.5.2 The Finite Element Method |
|
|
178 | (7) |
|
|
185 | (1) |
|
|
185 | (1) |
|
4.6.2 The Rayleigh--Ritz variational method |
|
|
186 | (1) |
|
4.6.3 The weighted residual method |
|
|
186 | (1) |
|
|
186 | (1) |
|
4.8 Random processes, probability, and statistics |
|
|
187 | (14) |
|
|
188 | (1) |
|
4.8.2 Markovian processes |
|
|
188 | (1) |
|
4.8.3 Population and sample |
|
|
188 | (1) |
|
4.8.4 Random variables, PDF, and CDF |
|
|
189 | (6) |
|
|
195 | (1) |
|
|
196 | (3) |
|
4.8.7 Kullback--Leibler divergence for uniform random numbers |
|
|
199 | (1) |
|
4.8.8 The law of large numbers |
|
|
199 | (1) |
|
4.8.9 The central limit theorem |
|
|
200 | (1) |
|
4.9 Evaluation of integrals |
|
|
201 | (5) |
|
4.9.1 The Monte Carlo method for numerical integration |
|
|
203 | (3) |
|
|
206 | (1) |
|
|
207 | (1) |
|
|
208 | (3) |
|
5 The neutron diffusion equation |
|
|
211 | (48) |
|
5.1 The conservation equation |
|
|
211 | (2) |
|
5.2 The one-group diffusion equation |
|
|
213 | (8) |
|
5.2.1 Nonmultiplying systems |
|
|
213 | (2) |
|
5.2.2 Multiplying systems |
|
|
215 | (4) |
|
5.2.3 One-group criticality |
|
|
219 | (2) |
|
5.3 The two-group diffusion equation |
|
|
221 | (13) |
|
5.3.1 Nonmultiplying systems |
|
|
221 | (6) |
|
5.3.2 Multiplying systems |
|
|
227 | (3) |
|
5.3.3 Two-group criticality |
|
|
230 | (4) |
|
5.4 The multigroup diffusion equation |
|
|
234 | (4) |
|
5.4.1 Numerical solution of the multigroup diffusion equations |
|
|
235 | (3) |
|
5.5 Effect of fuel concentration on critical mass |
|
|
238 | (10) |
|
|
239 | (1) |
|
5.5.2 Nonuniform fuel distribution: a slab model |
|
|
239 | (5) |
|
5.5.3 Nonuniform fuel distribution: a spherical model |
|
|
244 | (3) |
|
5.5.4 Critical core with flat thermal flux loading |
|
|
247 | (1) |
|
5.6 The two-group adjoint diffusion equations |
|
|
248 | (3) |
|
5.7 Core neutronics with diffusion equations |
|
|
251 | (5) |
|
|
256 | (1) |
|
|
257 | (1) |
|
|
258 | (1) |
|
6 The neutron transport equation |
|
|
259 | (46) |
|
6.1 Structure of the neutron transport equation |
|
|
260 | (8) |
|
6.1.1 An integro-differential form of the neutron transport equation |
|
|
260 | (5) |
|
6.1.2 The two-group transport equation |
|
|
265 | (1) |
|
6.1.3 The integral form of the transport equation |
|
|
266 | (2) |
|
6.1.4 Multigroup form of the integral transport equation |
|
|
268 | (1) |
|
6.2 Exact solutions of the transport equation |
|
|
268 | (17) |
|
6.2.1 The classic albedo problem |
|
|
270 | (1) |
|
6.2.2 Infinite medium with a plane isotropic source |
|
|
270 | (4) |
|
6.2.3 Finite sphere with a point isotropic source |
|
|
274 | (11) |
|
6.3 Numerical methods for solving the transport equation |
|
|
285 | (13) |
|
6.3.1 The discrete ordinates method |
|
|
285 | (2) |
|
6.3.2 The Spherical harmonics method |
|
|
287 | (6) |
|
|
293 | (2) |
|
|
295 | (1) |
|
6.3.5 The finite element method |
|
|
296 | (1) |
|
6.3.6 The nodal method with transport theory |
|
|
296 | (1) |
|
|
297 | (1) |
|
6.3.8 Criticality estimates |
|
|
297 | (1) |
|
6.4 Transport theory for reactor calculations |
|
|
298 | (4) |
|
6.4.1 Collision probability method |
|
|
299 | (1) |
|
6.4.2 Method of characteristics |
|
|
299 | (3) |
|
|
302 | (1) |
|
|
302 | (1) |
|
|
303 | (2) |
|
|
305 | (32) |
|
7.1 Stochastic simulation |
|
|
305 | (3) |
|
|
305 | (1) |
|
7.1.2 Events in a random walk |
|
|
305 | (1) |
|
7.1.3 The physics of interactions |
|
|
306 | (1) |
|
7.1.4 Nuclear interaction data |
|
|
306 | (1) |
|
7.1.5 How do we know an answer is good? |
|
|
306 | (2) |
|
7.2 Simulation of a random walk |
|
|
308 | (8) |
|
7.2.1 Monte Carlo simulation |
|
|
308 | (1) |
|
7.2.2 Estimators and tallies |
|
|
309 | (3) |
|
|
312 | (1) |
|
7.2.4 Sampling the "distance to collision" |
|
|
313 | (1) |
|
7.2.5 Determining the type of event |
|
|
313 | (1) |
|
7.2.6 Determining the nuclide of interaction |
|
|
314 | (1) |
|
7.2.7 Processing a scattering event |
|
|
314 | (1) |
|
7.2.8 Processing a fission event |
|
|
314 | (1) |
|
7.2.9 Processing a capture event |
|
|
315 | (1) |
|
7.2.10 Processing an escape-from-system event |
|
|
315 | (1) |
|
|
315 | (1) |
|
7.2.12 Batch, history, random walk and events |
|
|
316 | (1) |
|
7.3 Modeling the geometry |
|
|
316 | (12) |
|
7.3.1 Geometries for illustration of Monte Carlo simulation |
|
|
320 | (8) |
|
|
328 | (4) |
|
7.5 Variance reduction methods |
|
|
332 | (1) |
|
7.6 Estimating perturbations with Monte Carlo simulation |
|
|
333 | (1) |
|
|
333 | (1) |
|
|
334 | (1) |
|
|
334 | (1) |
|
|
335 | (2) |
|
|
337 | (12) |
|
8.1 Neutron and radiation transport codes |
|
|
338 | (2) |
|
|
338 | (1) |
|
|
338 | (1) |
|
|
338 | (1) |
|
|
339 | (1) |
|
|
339 | (1) |
|
|
339 | (1) |
|
|
339 | (1) |
|
|
340 | (1) |
|
8.1.9 Other Monte Carlo codes |
|
|
340 | (1) |
|
8.2 Time-dependent reactor kinetics codes |
|
|
340 | (1) |
|
8.3 Thermal hydraulics codes |
|
|
340 | (1) |
|
8.4 Radiological protection codes |
|
|
341 | (1) |
|
8.5 Performance and safety analyses |
|
|
341 | (1) |
|
|
341 | (3) |
|
|
344 | (1) |
|
|
344 | (1) |
|
|
344 | (1) |
|
|
345 | (1) |
|
|
345 | (4) |
|
9 Optimization and variational methods |
|
|
349 | (30) |
|
|
349 | (1) |
|
9.2 Deterministic optimization |
|
|
350 | (11) |
|
9.2.1 Deterministic optimization without constraints |
|
|
350 | (1) |
|
9.2.2 Deterministic optimization with algebraic constraints |
|
|
351 | (1) |
|
9.2.3 Optimal solution with a system of first-order ordinary differential equation constraints |
|
|
352 | (3) |
|
9.2.4 Optimal solution with a system of first-order ordinary differential equation constraints |
|
|
355 | (5) |
|
9.2.5 Optimal discrete control (Pontryagin maximum principle) |
|
|
360 | (1) |
|
9.3 Controller design and optimization |
|
|
361 | (4) |
|
|
365 | (2) |
|
9.5 Stochastic optimization |
|
|
367 | (6) |
|
|
367 | (5) |
|
9.5.2 Particle swarm optimization |
|
|
372 | (1) |
|
9.6 Applications of optimization in reactors |
|
|
373 | (2) |
|
9.6.1 Multi-objective core optimization |
|
|
373 | (1) |
|
9.6.2 Pressurized water reactor core pattern optimization |
|
|
374 | (1) |
|
9.6.3 Controller proportional integral derivative |
|
|
374 | (1) |
|
9.6.4 Radiation shielding |
|
|
374 | (1) |
|
9.6.5 Some other applications of optimization |
|
|
375 | (1) |
|
|
375 | (1) |
|
|
375 | (1) |
|
|
376 | (3) |
|
10 Monte Carlo simulation in nuclear systems |
|
|
379 | (38) |
|
|
379 | (2) |
|
10.2 Bare critical assemblies |
|
|
381 | (7) |
|
|
381 | (5) |
|
|
386 | (2) |
|
|
388 | (1) |
|
10.3.1 Storage of interacting units |
|
|
388 | (1) |
|
10.3.2 Storage of uranium hexafluoride cylinders |
|
|
388 | (1) |
|
10.4 Radiation moderation and shielding |
|
|
389 | (1) |
|
10.4.1 Radiation moderation for a neutron generator |
|
|
389 | (1) |
|
10.4.2 Radiation shielding |
|
|
390 | (1) |
|
10.5 Nuclear fission applications |
|
|
390 | (11) |
|
10.5.1 Unit lattice cell and fuel assembly of the AP1000 reactor |
|
|
390 | (4) |
|
10.5.2 The Toshiba 4S reactor |
|
|
394 | (6) |
|
10.5.3 Micronuclear reactor |
|
|
400 | (1) |
|
10.6 Nuclear fusion applications |
|
|
401 | (4) |
|
|
405 | (1) |
|
|
405 | (1) |
|
|
406 | (2) |
|
Annex A MCNP listing for Godiva (Section 10.2.1) |
|
|
408 | (2) |
|
Annex B MCNP input listing (Jezebel, Section 10.2.2) |
|
|
410 | (2) |
|
Annex C MCNP input listing (BKIOShld, Section 10.5.1) |
|
|
412 | (1) |
|
Annex D MCNP input listing (BK10AP10, Section 10.5.1) |
|
|
413 | (4) |
|
11 Comparisons: Monte Carlo, diffusion, and transport |
|
|
417 | (32) |
|
|
417 | (1) |
|
11.2 Criticality in a bare sphere |
|
|
417 | (4) |
|
11.2.1 One-group diffusion theory criticality |
|
|
417 | (1) |
|
11.2.2 Two-group diffusion theory criticality |
|
|
418 | (1) |
|
11.2.3 One-speed transport theory criticality |
|
|
419 | (2) |
|
11.3 The classic albedo calculation |
|
|
421 | (2) |
|
|
423 | (5) |
|
|
423 | (1) |
|
|
424 | (1) |
|
11.4.3 Monte Carlo simulation |
|
|
425 | (1) |
|
|
425 | (3) |
|
11.5 Flux in a finite sphere with a point isotropic source |
|
|
428 | (5) |
|
|
428 | (2) |
|
11.5.2 Transport theory exact solution |
|
|
430 | (1) |
|
11.5.3 Monte Carlo simulation |
|
|
431 | (2) |
|
|
433 | (1) |
|
|
433 | (1) |
|
|
434 | (1) |
|
Annex A MATLAB Program AlbedoSlabDiffTh.m (Section 11.3) |
|
|
435 | (3) |
|
Annex B MCNP Input File BK11Albd (Section 11.2) |
|
|
438 | (2) |
|
Annex C MATLAB Program CH11 ExactSolSlabJan03.m (Section 11.4.4) |
|
|
440 | (9) |
|
12 Exercises in Monte Carlo simulation |
|
|
449 | (40) |
|
12.1 Sampling from a distribution function |
|
|
449 | (4) |
|
12.1.1 Sampling from a normal distribution |
|
|
450 | (1) |
|
12.1.2 Sampling from a Watt fission spectrum |
|
|
451 | (2) |
|
12.2 Estimating the neutron flux in a non-multiplying sphere |
|
|
453 | (9) |
|
12.2.1 The simulation process |
|
|
453 | (3) |
|
12.2.2 MATLAB program for point source in a finite non-multiplying sphere |
|
|
456 | (4) |
|
|
460 | (2) |
|
12.3 Reflected assemblies |
|
|
462 | (2) |
|
12.4 Reactor core modeling |
|
|
464 | (9) |
|
|
464 | (1) |
|
|
465 | (1) |
|
12.4.3 Source description |
|
|
466 | (1) |
|
12.4.4 Plotting the geometry |
|
|
467 | (3) |
|
|
470 | (1) |
|
|
470 | (1) |
|
|
471 | (2) |
|
12.5 Radiation safety and shielding |
|
|
473 | (1) |
|
12.6 Perturbation calculations |
|
|
474 | (2) |
|
12.7 MCNP geometry plotting in core neutronics |
|
|
476 | (4) |
|
|
480 | (2) |
|
|
482 | (1) |
|
|
482 | (1) |
|
|
483 | (1) |
|
Annex A MATLAB Program CH12_NormalSampling.m |
|
|
484 | (2) |
|
Annex B MATLAB Program CH12_Watt Sampling.m |
|
|
486 | (3) |
|
13 Optimization in nuclear systems |
|
|
489 | (20) |
|
|
489 | (1) |
|
13.2 Reactor core design optimization |
|
|
489 | (4) |
|
13.3 Fusion neutronics design optimization |
|
|
493 | (1) |
|
13.4 Radiation shielding design optimization |
|
|
494 | (1) |
|
13.5 Fuel loading pattern optimization |
|
|
495 | (6) |
|
13.5.1 Optimal distribution: Pontryagin's maximum principle |
|
|
498 | (3) |
|
13.6 Radiation detection or optimization |
|
|
501 | (2) |
|
13.7 Controller design optimization |
|
|
503 | (1) |
|
|
504 | (1) |
|
|
505 | (1) |
|
|
506 | (3) |
|
14 Monte Carlo simulation in medical physics |
|
|
509 | (12) |
|
|
509 | (3) |
|
14.1.1 The production of radio-isotopes |
|
|
510 | (1) |
|
14.1.2 Alpha radiation therapy |
|
|
511 | (1) |
|
|
512 | (5) |
|
14.2.1 Monte Carlo simulation in brachytherapy |
|
|
512 | (2) |
|
14.2.2 Monte Carlo simulation to calculate energy deposition and dose distribution for brachytherapy |
|
|
514 | (3) |
|
|
517 | (1) |
|
|
517 | (4) |
Index |
|
521 | |