Atnaujinkite slapukų nuostatas

El. knyga: Nuclear Forensic Analysis

(Lawrence Livermore National Laboratory, California, USA), (Lawrence Livermore National Laboratory, California, USA), (Lawrence Livermore National Laboratory, California, USA)
  • Formatas: 524 pages
  • Išleidimo metai: 10-Dec-2014
  • Leidėjas: CRC Press Inc
  • Kalba: eng
  • ISBN-13: 9781439880623
Kitos knygos pagal šią temą:
  • Formatas: 524 pages
  • Išleidimo metai: 10-Dec-2014
  • Leidėjas: CRC Press Inc
  • Kalba: eng
  • ISBN-13: 9781439880623
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Now in its second edition, Nuclear Forensic Analysis provides a multidisciplinary reference for forensic scientists, analytical and nuclear chemists, and nuclear physicists in one convenient source. The authors focus particularly on the chemical, physical, and nuclear aspects associated with the production or interrogation of a radioactive sample. They consolidate fundamental principles of nuclear forensic analysis, all pertinent protocols and procedures, computer modeling development, interpretational insights, and attribution considerations. The principles and techniques detailed are then demonstrated and discussed in their applications to real-world investigations and casework conducted over the past several years.

Highlights of the Second Edition include:











A new section on sample analysis considerations and interpretation following a post-detonation nuclear forensic collection New case studies, including the most wide-ranging and multidisciplinary nuclear forensic investigation conducted by Lawrence Livermore National Laboratory to date Expanded treatments of radiologic dispersal devices (RDDs) and statistical analysis methodologies

The material is presented with minimal mathematical formality, using consistent terminology with limited jargon, making it a reliable, accessible reference. The broad-based coverage provides important insight into the multifaceted changes facing this recently developed science.

Recenzijos

Praise for the First Edition

"This book by three of the leading authorities in the field outlines a critically important area of forensic science in the modern world. should be in the library of every forensic laboratory." Chemistry Professor W.F. Kinard, College of Charleston, in The Journal of Forensic Sciences

Preface xv
Acknowledgments xix
Authors xxi
Chapter 1 Introduction
1(24)
1.1 Nuclear Materials
1(2)
1.2 Nuclear Power and Pu Production
3(2)
1.3 Nuclear Weapons and the Cold War
5(2)
1.4 Nuclear Treaties and Nonproliferation Programs
7(1)
1.5 SNM Disposition
8(2)
1.6 Nuclear Proliferation and Terrorism
10(3)
1.7 Nuclear Smuggling
13(4)
1.8 Forensic Effort Areas and Goals
17(4)
1.8.1 IND versus RDD
17(1)
1.8.2 Pre-Det and Post-Det
18(1)
1.8.3 Source and Route
19(1)
1.8.4 Casework/Attribution Overview
19(2)
1.9 Historical Perspective
21(1)
1.10 Nuances of Grammar
22(3)
References
22(3)
Chapter 2 Physical Basis of Nuclear Forensic Science
25(62)
2.1 Background
25(5)
2.2 Types of Radioactive Decay
30(3)
2.3 Rate Laws in Radioactive Decay
33(4)
2.4 Atoms, Binding Energy, and Chart of the Nuclides
37(9)
2.5 Nuclear Structure, Isomerism, and Selection Rules
46(13)
2.6 Nuclear Reactions
59(10)
2.7 Natural Radioactivity
69(4)
2.8 Fission, Barrier Penetration, and Energy Production
73(14)
References
83(4)
Chapter 3 Engineering Issues
87(74)
3.1 Natural versus Synthetic Materials
87(1)
3.2 Recovery of Actinides from Earth
88(4)
3.3 Separation and Enrichment of U Isotopes
92(21)
3.3.1 Electromagnetic Isotope Separation
94(2)
3.3.2 Gaseous Diffusion
96(6)
3.3.3 Thermal Diffusion
102(2)
3.3.4 Gas Centrifugation
104(4)
3.3.5 Aerodynamic Enrichment
108(1)
3.3.6 Laser Isotope Separation
109(2)
3.3.7 Isotope Enrichment through Chemical Exchange
111(1)
3.3.8 Blending and Mixing
112(1)
3.4 Nuclear Reactors, Power, and the Production of Pu and 233U
113(28)
3.5 Recovery and Purification of Heavy Elements from Reactor Products
141(8)
3.6 Heavy-Element Metals and Alloys
149(6)
3.7 Summary
155(6)
References
156(5)
Chapter 4 Chemistry and Nuclear Forensic Science
161(22)
4.1 Tracers in Inorganic Analysis
161(5)
4.2 Relevant Chemical Properties
166(8)
4.3 Radionuclides in Medicine and Industry
174(3)
4.4 Automation of Radiochemical Procedures
177(6)
References
180(3)
Chapter 5 Principles of Nuclear Explosive Devices and Debris Analysis
183(40)
5.1 One-Stage Fission Explosive (Atomic Bomb)
183(5)
5.2 Boosting
188(3)
5.3 Two-Stage Nuclear Explosive (Hydrogen Bomb)
191(1)
5.4 Forensic Analysis of Nuclear Explosive Debris
192(26)
5.4.1 Diagnosis of Nuclear Performance
193(11)
5.4.2 Fractionation of the Debris Field
204(8)
5.4.3 Debris Morphology and Processes of Debris Formation
212(3)
5.4.4 Delivery Signatures
215(3)
5.5 Post-Explosion Forensic Summary
218(5)
References
219(4)
Chapter 6 Chronometry
223(34)
6.1 Heavy Elements and Fission-Product Chronometers
224(27)
6.2 Granddaughters and Spoof Detection
251(1)
6.3 Detection of Incomplete Fuel Reprocessing
252(5)
References
255(2)
Chapter 7 Techniques for Small Signatures
257(36)
7.1 Chemical Separations and Reduction of Background
257(3)
7.2 Radiochemical Milking
260(4)
7.3 Mass Spectrometry and Microanalysis
264(1)
7.4 Radiation Detection
264(29)
7.4.1 Interactions of Radiation with Matter
264(1)
7.4.2 Decay Characteristics
265(4)
7.4.3 Gas-Phase Detectors
269(6)
7.4.4 Solid-State Detectors
275(5)
7.4.5 Scintillation Detectors
280(3)
7.4.6 Empirical Application and Spectra
283(6)
7.4.7 Coincidence and Anticoincidence Counting
289(2)
References
291(2)
Chapter 8 Collateral Forensic Indicators
293(8)
8.1 Stable Isotopes
293(1)
8.1.1 Lead
293(1)
8.1.2 Oxygen
293(1)
8.2 Inorganic Elements
294(2)
8.3 Organic Analyses
296(5)
8.3.1 High Explosives
297(1)
8.3.2 Hairs and Fibers
297(1)
8.3.3 Inks and Papers
298(1)
8.3.4 Fingermarks
299(1)
8.3.5 Other
299(1)
References
299(2)
Chapter 9 Sample Matrices and Collection
301(6)
9.1 Soil/Sediment Matrices
301(1)
9.2 Vegetation Matrices
302(1)
9.3 Water Matrix
303(1)
9.4 Fauna Matrices
303(1)
9.5 Other Matrices
303(1)
9.6 Collection Tactics
304(3)
References
306(1)
Chapter 10 Radiochemical Procedures
307(10)
10.1 Dissolution
307(1)
10.2 Tracer Exchange by Redox
308(1)
10.3 Chemical Separations
309(6)
10.4 MS Analysis and Reagent Purity
315(2)
References
315(2)
Chapter 11 Inorganic/Isotopic Sample Preparation
317(4)
11.1 Alpha Counting
317(1)
11.2 Beta Counting
318(1)
11.3 Gamma Counting
318(1)
11.4 Inorganic Techniques
319(2)
Chapter 12 Organic Sample Preparation
321(4)
12.1 Extraction
321(1)
12.2 Solid-Phase Microextraction
321(1)
12.3 Derivatization
322(3)
References
323(2)
Chapter 13 Extraordinary Sample Issues
325(10)
13.1 The RDD
325(6)
13.1.1 Isotopes and Commercial Uses
326(2)
13.1.2 Radiation Devices and Threat Potential
328(1)
13.1.3 Maximum-Credible Source and RDD Aftermath
329(2)
13.1.4 Historic Nuance
331(1)
13.2 Mixed Evidence
331(4)
References
333(2)
Chapter 14 Field Collection Kits
335(4)
Reference
337(2)
Chapter 15 NDA Field Radioactivity Detection
339(6)
References
343(2)
Chapter 16 Laboratory Analyses
345(34)
16.1 Radiation Counting Systems
345(5)
16.1.1 Counting Lab
345(1)
16.1.2 Counter Shielding and Systems
346(2)
16.1.3 Particle and Photon Detection
348(1)
16.1.3.1 Beta-Particle Counters
348(1)
16.1.3.2 Alpha-Particle Counters
348(1)
16.1.3.3 Gamma-Ray Counters
349(1)
16.1.3.4 Neutron Counters
349(1)
16.1.4 Chemistry Lab Application
350(1)
16.2 Tritium Analysis
350(3)
16.3 Imaging and Microscopy
353(6)
16.3.1 Optical Microscopy
353(1)
16.3.2 Scanning Electron Microscopy
354(1)
16.3.3 Transmission Electron Microscopy
355(1)
16.3.4 Electron Microprobe Analysis
356(1)
16.3.5 X-Ray Microanalysis
357(1)
16.3.6 Optical Spectroscopy
357(2)
16.4 Mass Spectrometry
359(7)
16.4.1 Isotope-Ratio MS
359(2)
16.4.2 Trace-Element MS
361(1)
16.4.3 Accelerator Mass Spectrometry
362(1)
16.4.4 MS and Microanalysis
363(3)
16.5 Gas Chromatography--Mass Spectrometry
366(3)
16.6 Other Techniques
369(10)
16.6.1 Capillary Electrophoresis
369(1)
16.6.2 Vis/NIR Reflectance Spectroscopy
370(2)
16.6.3 X-Ray Diffraction
372(1)
16.6.4 X-Ray Fluorescence
373(1)
References
374(5)
Chapter 17 Inferred Production Estimates
379(8)
17.1 Uranium
379(1)
17.2 Plutonium
380(1)
17.3 SNM Stocks
381(2)
17.4 Analysis
383(4)
References
385(2)
Chapter 18 Materials Profiling
387(8)
18.1 Criminalistics Comparisons
387(1)
18.2 Material Compositions
388(1)
18.3 Calculations
389(6)
18.3.1 Quantitative Data with Uncertainties
390(1)
18.3.2 Semiquantitative Data
391(1)
References
392(3)
Chapter 19 Source and Route Attribution
395(22)
19.1 Introduction
395(2)
19.1.1 Source Attribution Questions
396(1)
19.1.2 Route Attribution Questions
396(1)
19.2 Forensic Analysis of Interdicted Nuclear Materials
397(1)
19.3 Laboratory Characterization of Nuclear Materials for Source Signatures
398(2)
19.4 Laboratory Characterization of Nuclear Materials for Route Signatures
400(2)
19.5 Prioritization of Forensic Tools for Route Attribution
402(1)
19.6 Analytic Techniques for Nuclear Forensic Interrogation
403(2)
19.6.1 Isotopes
403(1)
19.6.2 Elemental Composition/Major and Trace Elements
404(1)
19.6.3 Organic Species
404(1)
19.6.4 DNA
404(1)
19.6.5 Physical and Structural Characteristics
404(1)
19.7 Geolocation and Route Attribution: Real-World Examples
405(5)
19.7.1 Pb-Isotope Fingerprinting
405(1)
19.7.2 O-Isotope Fingerprinting
405(3)
19.7.3 Trace Elements and Other Isotopic Ratios
408(2)
19.8 Reference Data for Enhanced Interpretation: Forensic Databases
410(2)
19.9 Source + Route Attribution: Two Examples
412(5)
References
414(3)
Chapter 20 Forensic Investigation of a Highly Enriched Uranium Sample Interdicted in Bulgaria
417(16)
20.1 Analyses of Uranium Oxide
420(5)
20.2 Analyses of Collateral (Route) Evidence
425(5)
20.2.1 Lead Container
425(1)
20.2.2 Yellow Wax
426(3)
20.2.3 Paper Liner and Label
429(1)
20.2.4 Glass Ampoule
429(1)
20.3 Attribution
430(3)
References
432(1)
Chapter 21 Counterforensic Investigation of U.S. Enrichment Plants
433(22)
21.1 Background
433(1)
21.2 Sampling
433(3)
21.3 Radiochemistry
436(4)
21.4 Results
440(3)
21.5 Interpretation
443(10)
21.6 Summary
453(2)
References
454(1)
Chapter 22 Nuclear Smuggling Hoax: D-38 Counterweight
455(2)
22.1 Background and Analyses
455(1)
22.2 Results and Discussion
456(1)
Reference
456(1)
Chapter 23 Nuclear Smuggling Hoax: Sc Metal
457(2)
23.1 Background and Analyses
457(1)
23.2 Results and Discussion
458(1)
Reference
458(1)
Chapter 24 Fatal "Cold Fusion" Explosion
459(6)
24.1 Background and Analyses
459(1)
24.2 Results and Discussion
460(1)
24.3 Commentary
461(4)
References
464(1)
Chapter 25 Questioned Sample from the U.S. Drug Enforcement Agency
465(12)
25.1 Background and Nondestructive Analysis
465(1)
25.2 Radiochemistry and Results
466(2)
25.3 Discussion
468(6)
25.4 Summary
474(3)
References
475(2)
Chapter 26 Radioactive Pillow Shipment
477(4)
26.1 Background and Analyses
477(1)
26.2 Results and Discussion
478(3)
Chapter 27 Afghanistan Scam Specimens
481(10)
27.1 Background and Questioned Specimens
481(1)
27.2 Initial NDA
481(3)
27.3 Forensic Analyses after Billet B&E
484(3)
27.4 Very Unusual Incorporated Objects
487(3)
27.5 Discussion and Assessment
490(1)
Acknowledgments 491(2)
Index 493
Kenton J. Moody is with the Nuclear Chemistry Division at Lawrence Livermore National Laboratory (LLNL), where he is a technical leader for the application of nuclear and radiochemical techniques to problems in national security and the U.S. nuclear stockpile. He also performs basic research on the heaviest elements. In addition to numerous classified reports detailing the performance of nuclear explosive devices, he has coauthored more than 100 refereed journal publications in the subject areas of the decay properties of the heaviest elements, nuclear reaction mechanisms, fission, and nuclear structure. He has co-discovered six chemical elements and more than four dozen heavy-element isotopes.

Patrick M. Grant has been a staff member at Livermore National Laboratory since 1983, serving as the deputy director and special operations and samples manager of the Forensic Science Center. In addition to numerous classified and law enforcement reports, he has authored or coauthored more than 120 refereed publications in the open literature in diverse subject areas. He has been a fellow of the American Academy of Forensic Sciences since 1999 and a member of the editorial board of the Journal of Forensic Sciences since 2003. One of his unclassified investigations, a scientific explanation for the Riverside Hospital Emergency Room "Mystery Fumes" incident, was extensively highlighted in the popular media and is now appearing in fundamental forensic science textbooks.

Ian D. Hutcheon is the deputy director of the Glenn Seaborg Institute, the Chemical and Isotopic Signatures group leader in the Nuclear and Chemical Sciences Division, and a Distinguished Member of the Technical Staff at Lawrence Livermore National Laboratory. He has authored over 180 publications in peer-reviewed journals in the areas of secondary-ion mass spectrometry, the early history of the solar system, and nuclear forensic analysis. He also serves on the review panels of the NASA Cosmochemistry Program and the Sample Return Laboratory Instruments and Data Analysis Program. He is a member of the American Geophysical Union and a fellow of the Meteoritical Society.