Atnaujinkite slapukų nuostatas

El. knyga: Nuclear Reactor Design

Edited by , Contributions by
Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book focuses on core design and methods for design and analysis. It is based on advances made in nuclear power utilization and computational methods over the past 40 years, covering core design of boiling water reactors and pressurized water reactors, as well as fast reactors and high-temperature gas-cooled reactors. The objectives of this book are to help graduate and advanced undergraduate students to understand core design and analysis, and to serve as a background reference for engineers actively working in light water reactors. Methodologies for core design and analysis, together with physical descriptions, are emphasized. The book also covers coupled thermal hydraulic core calculations, plant dynamics, and safety analysis, allowing readers to understand core design in relation to plant control and safety.
1 Fuel Burnup and Reactivity Control
1(48)
Shigeo Ohki
1.1 Fuel Burnup Analysis
1(8)
1.1.1 Burnup Equations
2(2)
1.1.2 Solutions of the Burnup Equations
4(2)
1.1.3 Reactivity Changes with Burnup
6(2)
1.1.4 Burnup
8(1)
1.2 Fission Product Poisoning
9(9)
1.2.1 135Xe
10(4)
1.2.2 149Sm
14(4)
1.2.3 135Xe Transients with Power Level Changes
18(1)
1.3 Effects of Burnable Poison and Chemical Shim
18(1)
1.3.1 Burnable Poison
18(1)
1.3.2 Chemical Shim
19(1)
1.4 Control Rod Worth
19(3)
1.4.1 Features of Control Rod Types
20(1)
1.4.2 Calculation of Control Rod Worth
21(1)
1.4.3 Shadowing Effect of Control Rods
22(1)
1.5 Inherent Reactivity Effects
22(16)
1.5.1 Definition of Power and Temperature Coefficients
22(2)
1.5.2 Temperature Coefficients by the Six-Factor Formula
24(12)
1.5.3 Other Temperature Coefficients
36(1)
1.5.4 Control Reactivity Balance
37(1)
1.6 Perturbation Theory for Reactivity Calculations
38(11)
1.6.1 Mathematical Preparation
38(3)
1.6.2 Perturbation Theory
41(3)
1.6.3 Application of Perturbation Theory: Reactivity Worth of Partially Inserted Control Rod
44(2)
References
46(3)
2 Nuclear Reactor Calculations
49(78)
Keisuke Okumura
Yoshiaki Oka
Yuki Ishiwatari
2.1 Nuclear Design Calculations
49(45)
2.1.1 Fundamental Neutron Transport Equation
49(2)
2.1.2 Neutron Spectrum
51(1)
2.1.3 Nuclear Data and Cross Sections
52(8)
2.1.4 Lattice Calculation
60(11)
2.1.5 Core Calculation
71(23)
2.2 Reactor Core, Plant Dynamics and Safety Calculations
94(33)
2.2.1 Reactor Core Calculation
94(9)
2.2.2 Plant Dynamics Calculation
103(12)
2.2.3 Safety Analysis
115(2)
2.2.4 Fuel Rod Analysis
117(8)
References
125(2)
3 Light Water Reactor Design
127(104)
Yoshiaki Oka
Sadao Uchikawa
Katsuo Suzuki
3.1 Development and Improvement of Light Water Reactors
127(4)
3.1.1 Pressurized Water Reactors
127(3)
3.1.2 Boiling Water Reactors
130(1)
3.2 BWR Core Design and Core and Fuel Management
131(47)
3.2.1 General Core Design
131(7)
3.2.2 Core Design Set-Up
138(6)
3.2.3 Design of Fuel Lattice and Assembly
144(6)
3.2.4 Characteristics of Reactivity
150(5)
3.2.5 Control of Power Distribution
155(6)
3.2.6 History and Future Trends in Core Design
161(10)
3.2.7 Core Management
171(4)
3.2.8 Fuel Management
175(3)
3.3 PWR Core Design and Core Fuel Management
178(53)
3.3.1 General Core Design
178(4)
3.3.2 Core Size and Figure Set-up
182(2)
3.3.3 Design of Fuel Lattice and Assembly
184(3)
3.3.4 Reactivity Characteristics
187(11)
3.3.5 Power Distribution Control
198(10)
3.3.6 Evolution and Future Trends of Core Design
208(12)
3.3.7 Core Management
220(3)
3.3.8 Fuel Management
223(4)
References
227(4)
4 Design of Advanced Reactors
231(92)
Hiroo Osada
Kiyonobu Yamashita
4.1 Design of Fast Reactors
231(36)
4.1.1 Basic Procedure of Core Design
234(4)
4.1.2 Core Geometry, Operation and Management
238(5)
4.1.3 Design of Fuel Element and Fuel Assembly
243(6)
4.1.4 Nuclear Design
249(1)
4.1.5 Reactivity Characteristics
250(6)
4.1.6 Power Distribution Characteristics
256(1)
4.1.7 Thermal-Hydraulic Design
257(5)
4.1.8 Transitions in Core Design and Tendency in the Future
262(5)
4.2 Design of High Temperature Gas-Cooled Reactors
267(56)
4.2.1 Overview
267(4)
4.2.2 Core, Fuel, and Control Rod Designs
271(6)
4.2.3 Method of Achieving High Outlet Coolant Temperature
277(5)
4.2.4 Nuclear Design
282(11)
4.2.5 Thermohydraulic Design
293(5)
4.2.6 Mechanical Design
298(1)
4.2.7 Annular Core Design
299(2)
References
301(4)
Answers for Exercises
305(18)
Index 323