Atnaujinkite slapukų nuostatas

El. knyga: Number Theory: Dreaming In Dreams - Proceedings Of The 5th China-japan Seminar

Edited by (Henan Suda Electric Vehicle Technology Co., Ltd., China & Kyushu Inst Of Technology, Japan & Shandong Univ, China), Edited by (Shandong Univ, China), Edited by (Kinki Univ, Japan)
Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This volume aims at collecting survey papers which give broad and enlightening perspectives of various aspects of number theory. Kitaoka's paper is a continuation of his earlier paper published in the last proceedings and pushes the research forward. Browning's paper introduces a new direction of research on analytic number theory — quantitative theory of some surfaces and Bruedern et al's paper details state-of-the-art affairs of additive number theory. There are two papers on modular forms — Kohnen's paper describes generalized modular forms (GMF) which has some applications in conformal field theory, while Liu's paper is very useful for readers who want to have a quick introduction to Maass forms and some analytic-number-theoretic problems related to them. Matsumoto et al's paper gives a very thorough survey on functional relations of root system zeta-functions, Hoshi–Miyake's paper is a continuation of Miyake's long and fruitful research on generic polynomials and gives rise to related Diophantine problems, and Jia's paper surveys some dynamical aspects of a special arithmetic function connected with the distribution of prime numbers. There are two papers of collections of problems by Shparlinski on exponential and character sums and Schinzel on polynomials which will serve as an aid for finding suitable research problems. Yamamura's paper is a complete bibliography on determinant expressions for a certain class number and will be useful to researchers.Thus the book gives a good-balance of classical and modern aspects in number theory and will be useful to researchers including enthusiastic graduate students.
Preface vii
Recent progress on the quantitative arithmetic of del Pezzo surfaces
1(19)
Tim D. Browning
Additive representation in thin sequences, VIII: Diophantine inequalities in review
20(60)
Jorg Brudern
Koichi Kawada
Trevor D. Wooley
Recent progress on dynamics of a special arithmetic function
80(7)
Chaohua Jia
Some Diophantine problems arising from the isomorphism problem of generic polynomials
87(19)
Akinari Hoshi
Katsuya Miyake
A statistical relation of roots of a polynomial in different local fields II
106(21)
Yoshiyuki Kitaoka
Generalized modular functions and their Fourier coefficients
127(8)
Winfried Kohnen
Functional relations for zeta-functions of root systems
135(49)
Yasushi Komori
Kohji Matsumoto
Hirofumi Tsumura
A quick introduction to Maass forms
184(33)
Jianya Liu
The number of non-zero cofficients of a polynomial-solved and unsolved problems
217(5)
Andrzej Schinzel
Open problems on exponential and character sums
222(21)
Igor E. Shparlinski
Errata to ``A general modular relation in analytic number theory''
243(1)
Haruo Tsukada
Bibliography on determinantal expressions of relative class numbers of imaginary abelian number fields 244(7)
Ken Yamamura
Author Index 251