Atnaujinkite slapukų nuostatas

El. knyga: Number Theory And Its Applications Ii

(Henan Suda Electric Vehicle Technology Co., Ltd., China & Kyushu Inst Of Technology, Japan & Shandong Univ, China), (Weinan Normal Univ, China), (Shangluo Univ, China), (Henan Suda Electric Vehicle Technology Co., Ltd., China)
  • Formatas: 288 pages
  • Išleidimo metai: 29-Nov-2017
  • Leidėjas: World Scientific Publishing Co Pte Ltd
  • Kalba: eng
  • ISBN-13: 9789813231610
Kitos knygos pagal šią temą:
  • Formatas: 288 pages
  • Išleidimo metai: 29-Nov-2017
  • Leidėjas: World Scientific Publishing Co Pte Ltd
  • Kalba: eng
  • ISBN-13: 9789813231610
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

The aim of the book is to give a smooth analytic continuation from basic subjects including linear algebra, group theory, Hilbert space theory, etc. to number theory. With plenty of practical examples and worked-out exercises, and the scope ranging from these basic subjects made applicable to number-theoretic settings to advanced number theory, this book can then be read without tears. It will be of immense help to the reader to acquire basic sound skills in number theory and its applications.Number theory used to be described as the queen of mathematics, that is, there is no practical use. However, with the development of computers and the security of internet communications, the importance of number theory has been exponentially increasing daily. The raison d'źtre of the present book in this situation is that it is extremely reader-friendly while keeping the rigor of serious mathematics and in-depth analysis of practical applications to various subjects including control theory and pseudo-random number generation. The use of operators is prevailing rather abundantly in anticipation of applications to electrical engineering, allowing the reader to master these skills without much difficulty. It also delivers a very smooth bridging between elementary subjects including linear algebra and group theory (and algebraic number theory) for the reader to be well-versed in an efficient and effortless way. One of the main features of the book is that it gives several different approaches to the same topic, helping the reader to gain deeper insight and comprehension. Even just browsing through the materials would be beneficial to the reader.
Preface v
1 Linear algebraic approach to algebraic number theory
1(26)
1.1 Algebraic preliminaries
2(9)
1.1.1 Vector spaces
2(1)
1.1.2 Integral domains
2(2)
1.1.3 Field extensions
4(4)
1.1.4 Norm and trace
8(3)
1.2 Algebraic number fields
11(3)
1.3 Algebraic integers
14(7)
1.3.1 Ideal class group
19(2)
1.4 Dedekind domains
21(1)
1.5 Modules over Dedekind domains
22(5)
2 Group-theoretic aspects of algebraic number theory
27(40)
2.1 Finitely generated abelian group
27(4)
2.2 Galois extensions
31(2)
2.3 Galois extension of number fields and Artin L-functions
33(2)
2.4 Examples of number fields
35(12)
2.4.1 The quadratic field with the golden section unit
35(5)
2.4.2 Cyclotomic fields
40(5)
2.4.3 The dihedral group as a Galois group
45(2)
2.5 Ciphers vs. PRNG
47(1)
2.6 The abundant class of Selberg zeta-functions
48(19)
2.6.1 Dirichlet characters
52(3)
2.6.2 Dirichlet L-functions
55(7)
2.6.3 The SKronecker class
62(1)
2.6.4 L-functions associated with elliptic curves
63(2)
2.6.5 The Selliptic class
65(2)
3 Arithmetic functions and Stieltjes integrals
67(64)
3.1 Introduction
67(1)
3.2 Arithmetical functions and their algebraic structure
68(8)
3.3 Generatingfunctionology
76(2)
3.4 Euler products
78(4)
3.5 PNT and the zero-free region
82(2)
3.6 Applications of Stieltjes integrals
84(14)
3.6.1 Stieltjes resultant and asymptotic formulas
92(6)
3.7 Lau's theorem
98(6)
3.8 Abel-Tauber process
104(27)
3.8.1 The Rieger-Nowak-Nakaya results
105(3)
3.8.2 Other complex powers of L-functions
108(5)
3.8.3 Riesz sums
113(1)
3.8.4 Abelian process
114(6)
3.8.5 Proof of Theorem 3.16
120(1)
3.8.6 Tauberian process
121(1)
3.8.7 Proof of Theorem 3.19
122(4)
3.8.8 Quellenangaben
126(1)
3.8.9 Zero-free region for L-functions
126(2)
3.8.10 Case of infinitely many poles
128(1)
3.8.11 Modified Selberg class functions
128(3)
4 Number theory in the unit disc
131(34)
4.1 Lambert series
131(25)
4.1.1 Boundary functions of certain Lambert series
131(5)
4.1.2 Riemann's legacy
136(5)
4.1.3 Lambert series and Dedekind sums
141(8)
4.1.4 Transformation formula for certain Lambert series
149(5)
4.1.5 The RH
154(2)
4.2 Quadratic reciprocity and Riemann's non-differentiable function
156(9)
4.2.1 Theta-transformation formula
158(4)
4.2.2 Remarks
162(3)
5 Hilbert space and number theory
165(50)
5.1 Hilbert spaces
166(24)
5.1.1 Self-adjoint operators and Stieltjes integration
180(4)
5.1.2 Spectral decomposition of self-adjoint operators
184(1)
5.1.3 Completely continuous integral operators
185(5)
5.2 Hilbert space and number theory
190(6)
5.3 Kuznetsov trace formula
196(19)
5.3.1 Kuznetsov formula reversed
202(4)
5.3.2 Proof of Theorem 5.29
206(9)
6 Control systems and number theory
215(40)
6.1 Introduction and preliminaries
216(1)
6.2 State space representation and the visualization principle
216(5)
6.3 Chain scattering representation
221(5)
6.3.1 Siegel upper space
224(1)
6.3.2 (Unity) feedback system
225(1)
6.4 Illustrative examples of chain scattering representation
226(6)
6.5 Finite vs. infinite power signals
232(7)
6.6 Control theory in the unit disc
239(2)
6.7 J-lossless factorization and interpolation
241(2)
6.8 Robust controller and interpolation
243(1)
6.9 A generalized Nevanlinna-Pick interpolation problem
244(5)
6.10 Proof of Theorem 6.5
249(2)
6.11 Another statement
251(4)
Bibliography 255(16)
Index 271