Preface |
|
v | |
|
1 Linear algebraic approach to algebraic number theory |
|
|
1 | (26) |
|
1.1 Algebraic preliminaries |
|
|
2 | (9) |
|
|
2 | (1) |
|
|
2 | (2) |
|
|
4 | (4) |
|
|
8 | (3) |
|
1.2 Algebraic number fields |
|
|
11 | (3) |
|
|
14 | (7) |
|
|
19 | (2) |
|
|
21 | (1) |
|
1.5 Modules over Dedekind domains |
|
|
22 | (5) |
|
2 Group-theoretic aspects of algebraic number theory |
|
|
27 | (40) |
|
2.1 Finitely generated abelian group |
|
|
27 | (4) |
|
|
31 | (2) |
|
2.3 Galois extension of number fields and Artin L-functions |
|
|
33 | (2) |
|
2.4 Examples of number fields |
|
|
35 | (12) |
|
2.4.1 The quadratic field with the golden section unit |
|
|
35 | (5) |
|
|
40 | (5) |
|
2.4.3 The dihedral group as a Galois group |
|
|
45 | (2) |
|
|
47 | (1) |
|
2.6 The abundant class of Selberg zeta-functions |
|
|
48 | (19) |
|
2.6.1 Dirichlet characters |
|
|
52 | (3) |
|
2.6.2 Dirichlet L-functions |
|
|
55 | (7) |
|
2.6.3 The SKronecker class |
|
|
62 | (1) |
|
2.6.4 L-functions associated with elliptic curves |
|
|
63 | (2) |
|
2.6.5 The Selliptic class |
|
|
65 | (2) |
|
3 Arithmetic functions and Stieltjes integrals |
|
|
67 | (64) |
|
|
67 | (1) |
|
3.2 Arithmetical functions and their algebraic structure |
|
|
68 | (8) |
|
3.3 Generatingfunctionology |
|
|
76 | (2) |
|
|
78 | (4) |
|
3.5 PNT and the zero-free region |
|
|
82 | (2) |
|
3.6 Applications of Stieltjes integrals |
|
|
84 | (14) |
|
3.6.1 Stieltjes resultant and asymptotic formulas |
|
|
92 | (6) |
|
|
98 | (6) |
|
|
104 | (27) |
|
3.8.1 The Rieger-Nowak-Nakaya results |
|
|
105 | (3) |
|
3.8.2 Other complex powers of L-functions |
|
|
108 | (5) |
|
|
113 | (1) |
|
|
114 | (6) |
|
3.8.5 Proof of Theorem 3.16 |
|
|
120 | (1) |
|
|
121 | (1) |
|
3.8.7 Proof of Theorem 3.19 |
|
|
122 | (4) |
|
|
126 | (1) |
|
3.8.9 Zero-free region for L-functions |
|
|
126 | (2) |
|
3.8.10 Case of infinitely many poles |
|
|
128 | (1) |
|
3.8.11 Modified Selberg class functions |
|
|
128 | (3) |
|
4 Number theory in the unit disc |
|
|
131 | (34) |
|
|
131 | (25) |
|
4.1.1 Boundary functions of certain Lambert series |
|
|
131 | (5) |
|
|
136 | (5) |
|
4.1.3 Lambert series and Dedekind sums |
|
|
141 | (8) |
|
4.1.4 Transformation formula for certain Lambert series |
|
|
149 | (5) |
|
|
154 | (2) |
|
4.2 Quadratic reciprocity and Riemann's non-differentiable function |
|
|
156 | (9) |
|
4.2.1 Theta-transformation formula |
|
|
158 | (4) |
|
|
162 | (3) |
|
5 Hilbert space and number theory |
|
|
165 | (50) |
|
|
166 | (24) |
|
5.1.1 Self-adjoint operators and Stieltjes integration |
|
|
180 | (4) |
|
5.1.2 Spectral decomposition of self-adjoint operators |
|
|
184 | (1) |
|
5.1.3 Completely continuous integral operators |
|
|
185 | (5) |
|
5.2 Hilbert space and number theory |
|
|
190 | (6) |
|
5.3 Kuznetsov trace formula |
|
|
196 | (19) |
|
5.3.1 Kuznetsov formula reversed |
|
|
202 | (4) |
|
5.3.2 Proof of Theorem 5.29 |
|
|
206 | (9) |
|
6 Control systems and number theory |
|
|
215 | (40) |
|
6.1 Introduction and preliminaries |
|
|
216 | (1) |
|
6.2 State space representation and the visualization principle |
|
|
216 | (5) |
|
6.3 Chain scattering representation |
|
|
221 | (5) |
|
|
224 | (1) |
|
6.3.2 (Unity) feedback system |
|
|
225 | (1) |
|
6.4 Illustrative examples of chain scattering representation |
|
|
226 | (6) |
|
6.5 Finite vs. infinite power signals |
|
|
232 | (7) |
|
6.6 Control theory in the unit disc |
|
|
239 | (2) |
|
6.7 J-lossless factorization and interpolation |
|
|
241 | (2) |
|
6.8 Robust controller and interpolation |
|
|
243 | (1) |
|
6.9 A generalized Nevanlinna-Pick interpolation problem |
|
|
244 | (5) |
|
6.10 Proof of Theorem 6.5 |
|
|
249 | (2) |
|
|
251 | (4) |
Bibliography |
|
255 | (16) |
Index |
|
271 | |