Atnaujinkite slapukų nuostatas

El. knyga: Observability and Controllability of General Linear Systems

(University of Technology of BelfortMontbéliard, France (Retired))
  • Formatas: 349 pages
  • Išleidimo metai: 31-Oct-2018
  • Leidėjas: CRC Press
  • Kalba: eng
  • ISBN-13: 9780429778537
Kitos knygos pagal šią temą:
  • Formatas: 349 pages
  • Išleidimo metai: 31-Oct-2018
  • Leidėjas: CRC Press
  • Kalba: eng
  • ISBN-13: 9780429778537
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Observability and Controllability of General Linear Systems treats five different families of the linear systems, three of which are new. The book begins with the definition of time together with a brief description of its crucial properties. It presents further new results on matrices, on polynomial matrices, on matrix polynomials, on rational matrices, and on the new compact, simple and elegant calculus that enabled the generalization of the transfer function matrix concept and of the state concept, the proofs of the new necessary and sufficient observability and controllability conditions for all five classes of the studied systems.

Features

Generalizes the state space concept and the complex domain fundamentals of the control systems unknown in previously published books by other authors.

Addresses the knowledge and ability necessary to overcome the crucial lacunae of the existing control theory and drawbacks of its applications.

Outlines new effective mathematical means for effective complete analysis and synthesis of the control systems.

Upgrades, completes and broadens the control theory related to the classical self-contained control concepts: observability and controllability.



Provides information necessary to create and teach advanced inherently upgraded control courses.
Preface xi
I System Classes 1(92)
1 Introduction
3(16)
1.1 Time
3(3)
1.2 Notational preliminaries
6(2)
1.3 Compact, simple, and elegant calculus
8(1)
1.4 System behavior
9(7)
1.5 Control
16(3)
2 IO systems
19(12)
2.1 IO system mathematical model
19(9)
2.1.1 Time domain
19(3)
2.1.2 Complex domain
22(6)
2.2 IO plant desired regime
28(2)
2.3 Exercises
30(1)
3 ISO systems
31(10)
3.1 ISO system mathematical model
31(7)
3.1.1 Time domain
31(2)
3.1.2 Complex domain
33(5)
3.2 ISO plant desired regime
38(2)
3.3 Exercises
40(1)
4 EISO systems
41(24)
4.1 EISO system mathematical model
41(21)
4.1.1 Time domain
41(6)
4.1.2 Complex domain
47(15)
4.2 EISO plant desired regime
62(2)
4.3 Exercises
64(1)
5 HISO systems
65(12)
5.1 HISO system mathematical model
65(1)
5.1.1 Time domain
65(1)
5.1.2 Complex domain
65(1)
5.2 The HISO plant desired regime
66(8)
5.3 Exercises
74(3)
6 IIO systems
77(16)
6.1 IIO system mathematical model
77(13)
6.1.1 Time domain
77(2)
6.1.2 Complex domain
79(11)
6.2 IIO plant desired regime
90(1)
6.3 Exercises
91(2)
II Observability 93(64)
7 Mathematical preliminaries
95(38)
7.1 Linear independence and matrices
95(2)
7.2 Matrix range, null space, and rank
97(7)
7.3 Linear independence and scalar functions
104(3)
7.4 Linear independence and matrix functions
107(13)
7.5 Polynomial matrices. Matrix polynomials
120(5)
7.6 Rational matrices
125(8)
8 Observability and stability
133(10)
8.1 Observability and system regime
133(1)
8.2 Observability definition in general
134(2)
8.3 Observability criterion in general
136(3)
8.4 Observability and stability
139(4)
8.4.1 System stability
139(2)
8.4.2 System stability and observability
141(2)
9 Various systems observability
143(14)
9.1 IO systems observability
143(4)
9.2 ISO systems observability
147(2)
9.3 EISO systems observability
149(1)
9.4 HISO systems observability
150(2)
9.5 IIO systems observability
152(5)
III Controllability 157(70)
10 Controllability fundamentals
159(12)
10.1 Controllability and system regime
159(1)
10.2 Controllability concepts
159(1)
10.3 Controllability definitions in general
160(2)
10.4 General state controllability criteria
162(3)
10.5 General output controllability criteria
165(6)
11 Various systems controllability
171(56)
11.1 IO system state controllability
171(14)
11.1.1 Definition
171(1)
11.1.2 Criteria
172(13)
11.2 IO system output controllability
185(10)
11.2.1 Definition
185(1)
11.2.2 Criteria
185(10)
11.3 ISO system state controllability
195(2)
11.3.1 Definition
195(1)
11.3.2 Criterion
196(1)
11.4 ISO system output controllability
197(4)
11.4.1 Definition
197(1)
11.4.2 Criteria
197(4)
11.5 EISO system state controllability
201(2)
11.5.1 Definition
201(1)
11.5.2 Criterion
201(2)
11.6 EISO system output controllability
203(3)
11.6.1 Definition
203(1)
11.6.2 Criteria
203(3)
11.7 HISO system state controllability
206(4)
11.7.1 Definition
206(1)
11.7.2 Criterion
207(3)
11.8 HISO system output controllability
210(4)
11.8.1 Definition
210(1)
11.8.2 Criteria
210(4)
11.9 IIO system state controllability
214(8)
11.9.1 Definition
214(2)
11.9.2 Criterion
216(6)
11.10 IIO system output controllability
222(7)
11.10.1 Definition
222(1)
11.10.2 Criteria
222(5)
IV Appendix 227(100)
A Notation
229(14)
A.1 Abbreviations
229(1)
A.2 Indexes
230(1)
A.2.1 Subscripts
230(1)
A.2.2 Superscript
230(1)
A.3 Letters
230(9)
A.3.1 Calligraphic Letters
231(1)
A.3.2 Fraktur Letters
231(2)
A.3.3 Greek Letters
233(1)
A.3.4 Roman Letters
234(5)
A.4 Name
239(1)
A.5 Symbols, vectors, sets and matrices
240(1)
A.6 Units
241(2)
B Example
243(6)
B.1 IO system example
243(6)
C Transformations
249(6)
C.1 Transformation of IO into ISO system
249(2)
C.2 ISO and EISO forms of HO system
251(4)
D Proofs
255(72)
D.1 Proof of Lemma 97
255(1)
D.2 Proof of Theorem 110
256(2)
D.3 Proof of Theorem 121
258(12)
D.4 Proof of Theorem 128
270(3)
D.5 Proof of Theorem 130
273(3)
D.6 Proof of Theorem 141
276(1)
D.7 Proof of Theorem 147
277(2)
D.8 Proof of Theorem 148
279(1)
D.9 Proof of Theorem 149
280(2)
D.10 Proof of Theorem 161
282(12)
D.11 Proof of Theorem 163
294(10)
D.12 Proof of Theorem 173
304(3)
D.13 Proof of Theorem 181
307(2)
D.14 Proof of Theorem 185
309(5)
D.15 Proof of Theorem 215
314(13)
V Index 327
Author Index
329(2)
Subject Index
331
Mr. Lyubomir T. Gruyitch is Certified Mechanical Engineer (Dipl. M. Eng.), Master of Electrical Engineering Sciences (M. E. E. Sc.), and Doctor of Engineering Sciences (D. Sc.) (All with the University of Belgrade, Serbia). Dr. Gruyitch was a leading contributor to the creation of the research Laboratory of Automatic Control, Mechatronics, Manufacturing Engineering and Systems Engineering of the National School of Engineers (Belfort, France), and a founder of the educational and research Laboratory of Automatic Control of the FME. He has published 13 books (in: English 12, Serb 1), 4 textbooks (in: Serb), 11 lecture notes (in: English 2, French 7, Serb 2), one manual of solved problems (in: Serb), one book translation from Russian, chapters in eight scientific books, 130 scientific papers in scientific journals, 173 conference research papers and two educational papers. Professor Gruyitch supervised one doctorate at the University of Technology Belfort-Montbeliard - UTBM (France), which gained the highest grade by an international (French - USA) jury, five doctorates at the University of Belgrade (Serbia), four DEA (equivalent to M. Sc.) theses at the ENI and five master theses at the University of Belgrade. Professor Gruyitch was a co-initiator of the proposal for a new tentative, highly advanced, Department of Automatique et Systémique at the UTBM, and the Coordinator of the team that worked out the full project. He was cofounder of the Cathedra of Automatic Control and of the undergraduate and graduate Group of Automatic Control of the FME. He introduced a number of new courses at the universities in France, South Africa and Serbia. He was the principal investigator supervising several projects funded by industry in Serbia. Professor Gruyitch was a member of the Acting Senate of the UTBM and the Coordinator of the Commission of Research of the UTBM. He was the Chief of the Cathedra of Automatic Control, the Chief of the Laboratory of Automatic Control and the President of the Senate of the Faculty of Mechanical Engineering, Belgrade. Dr. Gruyitch gave invited university seminars in Belgium, Canada, England, France, Russia, Serbia, Tunis and USA. He was invited plenary sessions speaker, Organizer and/or Chairman of invited sessions at the international conferences, and President of the International Program Committee of the IFAC - IFIP - IMACS Conference Control of Industrial Systems, Belfort, France (more than 300 participants from 42 countries with four continents).