Atnaujinkite slapukų nuostatas

El. knyga: Observational Studies in a Learning Health System: Workshop Summary

  • Formatas: 134 pages
  • Išleidimo metai: 02-Dec-2013
  • Leidėjas: National Academies Press
  • Kalba: eng
  • ISBN-13: 9780309290821
Kitos knygos pagal šią temą:
  • Formatas: 134 pages
  • Išleidimo metai: 02-Dec-2013
  • Leidėjas: National Academies Press
  • Kalba: eng
  • ISBN-13: 9780309290821
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Clinical research strains to keep up with the rapid and iterative evolution of medical interventions, clinical practice innovation, and the increasing demand for information on the clinical effectiveness of these advancements. In response to the growing availability of archived and real-time digital health data and the opportunities this data provides for research, as well as the increasing number of studies using prospectively collected clinical data, the Institute of Medicine's Roundtable on Value & Science-Driven Health Care convened a workshop on Observational Studies in a Learning Health System. Participants, including experts from a wide range of disciplines - clinical researchers, statisticians, biostatisticians, epidemiologists, health care informaticians, health care analytics, research funders, health products industry, clinicians, payers, and regulators - explored leading edge approaches to observational studies, charted a course for the use of the growing health data utility, and identified opportunities to advance progress. Workshop speakers and individual participants strove to identify stakeholder needs and barriers to the broader application of observational studies.



Observational Studies in a Learning Health Systemis the summary of the workshop. This report explores the role of observational studies in the generation of evidence to guide clinical and health policy decisions. The report discusses concepts of rigorous observational study design and analysis, emerging statistical methods, and opportunities and challenges of observational studies to complement evidence from experimental methods, treatment heterogeneity, and effectiveness estimates tailored toward individual patients.

Table of Contents



Front Matter 1 Introduction 2 Issues Overview for Observational Studies in Clinical Research 3 Engaging the Issue of Bias 4 Generalizing Randomized Clinical Trial Results to Broader Populations 5 Detecting Treatment-Effect Heterogeneity 6 Predicting Individual Responses 7 Strategies Going Forward 8 Common Themes for Progress Appendix A: Biographies of Workshop Speakers Appendix B: Workshop Agenda Appendix C: Workshop Participants
Acronyms and Abbreviations xix
1 Introduction
1(8)
The Role of Observational Studies in a Learning Health System
2(2)
The Roundtable and the Learning Health System Series
4(1)
Workshop Scope and Objectives
5(1)
Organization of the Summary
6(1)
References
7(2)
2 Issues Overview for Observational Studies in Clinical Research
9(8)
Pressing Questions for Consideration
10(4)
Discussion
14(1)
References
15(2)
3 Engaging the Issue of Bias
17(14)
An Introduction to the Issue of Bias
18(2)
Instrumental Variables and Their Sensitivity to Unobserved Biases
20(3)
An Empirical Approach to Measuring and Calibrating for Error in Observational Analyses
23(3)
Comment
26(1)
Discussion
27(2)
References
29(2)
4 Generalizing Randomized Clinical Trial Results to Broader Populations
31(14)
Introduction to the Issue
32(2)
Generalizing the Right Question
34(3)
Use of Observational Studies to Determine Generalizability of RCTs
37(2)
Comment
39(1)
Discussion
40(2)
References
42(3)
5 Detecting Treatment-Effect Heterogeneity
45(12)
Key Concepts in Heterogeneity
46(2)
Example of Comparative Effectiveness
48(2)
Identification of Effect-Heterogeneity Using Instrumental Variables
50(2)
Comment
52(2)
Discussion
54(2)
References
56(1)
6 Predicting Individual Responses
57(12)
Introduction to Individual Response Prediction
58(2)
Data-Driven Prediction Models
60(2)
Individualized Prediction of Risk
62(2)
Comment
64(1)
Discussion
65(3)
References
68(1)
7 Strategies Going Forward
69(10)
A Journal Editor's Perspective
70(1)
Issues to Consider Moving Forward
71(2)
Lessons from PCORI
73(1)
Discussion
74(2)
Closing Remarks
76(3)
8 Common Themes for Progress
79(6)
Methods
80(1)
Policy
81(1)
Stakeholder Engagement
82(3)
Appendixes
A Biographies of Workshop Speakers 85(16)
B Workshop Agenda 101(10)
C Workshop Participants 111