Atnaujinkite slapukų nuostatas

Oeuvres - Collected Papers III: 1972 - 1984 First Edition 2003. Reprint 2013 of the 2003 edition [Minkštas viršelis]

  • Formatas: Paperback / softback, 733 pages, aukštis x plotis: 235x155 mm, weight: 1116 g, 1 Illustrations, black and white; VI, 733 p. 1 illus., 1 Paperback / softback
  • Serija: Springer Collected Works in Mathematics
  • Išleidimo metai: 14-Apr-2014
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642398375
  • ISBN-13: 9783642398377
Kitos knygos pagal šią temą:
  • Formatas: Paperback / softback, 733 pages, aukštis x plotis: 235x155 mm, weight: 1116 g, 1 Illustrations, black and white; VI, 733 p. 1 illus., 1 Paperback / softback
  • Serija: Springer Collected Works in Mathematics
  • Išleidimo metai: 14-Apr-2014
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642398375
  • ISBN-13: 9783642398377
Kitos knygos pagal šią temą:
The impact and influence of Jean-Pierre Serre"s work have been notable ever since his doctoral thesis on homotopy groups. The abundance of significant results and deep insight contained in his research and survey papers ranging through topology, several complex variables, and algebraic geometry to number theory, group theory, commutative algebra and modular forms, continues to provide inspiring reading for mathematicians working in these areas, in their research and their teaching.Characteristic of Serre"s publications are the many open questions he formulated suggesting further research directions. Four volumes specify how he has provided comments on and corrections to most articles, and described the present status of the open questions with reference to later results.Jean-Pierre Serre is one of a few mathematicians to have won the Fields medal, the Abel prize, and the Wolf prize.

Professor Jean-Pierre Serre ist ein renommierter französischer Mathematiker am College de France in Paris.
Extensions de corps ordonnes.- (avec A Borel) Impossibilite de fibrer
un espace euclidien par des fibres compactes.- Cohomologie des extensions de
groupes.- Homologie singuliere des espaces fibres. I. La suite spectrale.-
Homologie singuliere des espaces fibres. II. Les espaces de lacets.