Atnaujinkite slapukų nuostatas

El. knyga: Opportunistic Spectrum Utilization in Vehicular Communication Networks

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This brief examines current research on improving Vehicular Networks (VANETs), examining spectrum scarcity due to the dramatic growth of mobile data traffic and the limited bandwidth of dedicated vehicular communication bands and the use of opportunistic spectrum bands to mitigate congestion. It reviews existing literature on the use of opportunistic spectrum bands for VANETs, including licensed and unlicensed spectrum bands and a variety of related technologies, such as cognitive radio, WiFi and device-to-device communications. Focused on analyzing spectrum characteristics, designing efficient spectrum exploitation schemes, and evaluating the date delivery performance when utilizing different opportunistic spectrum bands, the results presented in this brief provide valuable insights on improving the design and deployment of future VANETs.
1 Introduction
1(8)
1.1 Overview of Vehicular Networks
1(2)
1.2 Spectrum Scarcity in VANETs
3(2)
1.3 Aim of the Monograph
5(4)
References
6(3)
2 Opportunistic Communication Spectra Utilization
9(20)
2.1 Cognitive Radio (Licensed Bands) for VANETs
9(5)
2.1.1 Spectrum Sensing in CR-VANETs
11(2)
2.1.2 Dynamic Spectrum Access in CR-VANETs
13(1)
2.2 Opportunistic WiFi (Unlicensed Band) for VANETs
14(9)
2.2.1 Drive-thru Internet Access
17(3)
2.2.2 Vehicular WiFi Offloading
20(3)
2.3 Device-to-Device Communication
23(6)
2.3.1 Spectrum Efficiency
23(1)
2.3.2 Power Efficiency
24(1)
References
25(4)
3 Opportunistic Spectrum Access Through Cognitive Radio
29(28)
3.1 System Model
30(2)
3.1.1 Urban Street Pattern
30(1)
3.1.2 Spatial Distribution of PTs
31(1)
3.1.3 Temporal Channel Usage Pattern of PTs
31(1)
3.1.4 Mobility Model
32(1)
3.2 Channel Availability Analysis
32(7)
3.2.1 Analysis of Tin in Urban Scenarios
32(3)
3.2.2 Analysis of Tout in Urban Scenarios
35(1)
3.2.3 Estimation of λin and λout
36(1)
3.2.4 Derivation of Channel Availability
37(2)
3.3 Game Theoretic Spectrum Access Scheme
39(7)
3.3.1 Formulation of Spectrum Access Game
40(1)
3.3.2 Nash Equilibrium in Channel Access Game
41(1)
3.3.3 Uniform MAC
42(1)
3.3.4 Slotted ALOHA
43(1)
3.3.5 Efficiency Analysis
43(2)
3.3.6 Distributed Algorithms to Achieve NE with High ER
45(1)
3.4 Performance Evaluation
46(4)
3.5 Summary
50(7)
Appendix
51(4)
References
55(2)
4 Performance Analysis of WiFi Offloading in Vehicular Environments
57(14)
4.1 System Model
59(2)
4.1.1 Communication Model
59(1)
4.1.2 Mobility Model
60(1)
4.1.3 Queueing Model
60(1)
4.2 Derivation of Effective Service Time
61(2)
4.3 Analysis of Queueing System and Offloading Performance
63(3)
4.3.1 Queue Analysis
63(2)
4.3.2 Offloading Performance
65(1)
4.4 Performance Evaluation
66(2)
4.5 Summary
68(3)
References
69(2)
5 Conclusions and Future Directions
71
5.1 Conclusions
71(1)
5.2 Future Research Directions
72
5.2.1 Exploiting D2D Communication for VANETs
72(2)
5.2.2 Opportunistic Communication Framework
74(1)
References
75