Atnaujinkite slapukų nuostatas

El. knyga: Opportunities in Protection Materials Science and Technology for Future Army Applications

  • Formatas: 176 pages
  • Išleidimo metai: 27-Jul-2011
  • Leidėjas: National Academies Press
  • Kalba: eng
  • ISBN-13: 9780309212885
Kitos knygos pagal šią temą:
  • Formatas: 176 pages
  • Išleidimo metai: 27-Jul-2011
  • Leidėjas: National Academies Press
  • Kalba: eng
  • ISBN-13: 9780309212885
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

"Armor plays a significant role in the protection of warriors. During the course of history, the introduction of new materials and improvements in the materials already used to construct armor has led to better protection and a reduction in the weight ofthe armor. But even with such advances in materials, the weight of the armor required to manage threats of ever-increasing destructive capability presents a huge challenge. Opportunities in Protection Materials Science and Technology for Future Army Applications explores the current theoretical and experimental understanding of the key issues surrounding protection materials, identifies the major challenges and technical gaps for developing the future generation of lightweight protection materials, and recommends a path forward for their development. It examines multiscale shockwave energy transfer mechanisms and experimental approaches for their characterization over short timescales, as well as multiscale modeling techniques to predict mechanisms for dissipating energy. The report also considers exemplary threats and design philosophy for the three key applications of armor systems: (1) personnel protection, including body armor and helmets, (2) vehicle armor, and (3 transparent armor. Opportunities inProtection Materials Science and Technology for Future Army Applications recommends that the Department of Defense (DoD) establish a defense initiative for protection materials by design (PMD), with associated funding lines for basic and applied research. The PMD initiative should include a combination of computational, experimental, and materials testing, characterization, and processing research conducted by government, industry, and academia."--Publisher's description.

Summary 1(6)
1 Overview
7(5)
Introduction
7(2)
The Challenge
7(2)
Scope of the Study
9(1)
Statement of Task
9(1)
Study Methodology
9(3)
Report Organization
9(1)
Other Issues
10(1)
Overarching Recommendation
10(2)
2 Fundamentals of Lightweight Armor Systems
12(12)
Armor System Performance and Testing in General
12(2)
Definition of Armor Performance
12(1)
Testing of Armor Systems
13(1)
Exemplary Threats and Armor Designs
14(1)
Personnel Protection
14(4)
Threat
14(1)
Design Considerations for Fielded Systems
15(3)
Vehicle Armor
18(2)
Threat
18(1)
Design Considerations for Fielded Systems
18(2)
Transparent Armor
20(1)
Threat
20(1)
Design Considerations for Fielded Systems
21(1)
From Armor Systems to Protection Materials
21(2)
Existing Paradigm
21(2)
Security and Export Controls
23(1)
3 Mechanisms of Penetration in Protective Materials
24(11)
Penetration Mechanisms in Metals and Alloys
25(1)
Penetration Mechanisms in Ceramics and Glasses
26(2)
Penetration Mechanisms in Polymeric Materials
28(1)
Failure Mechanisms in Cellular-Sandwich Materials Due to Blasts
29(3)
Conclusions
32(3)
4 Integrated Computational And Experimental Methods for the Design of Protection Material and Protection Systems: Current Status and Future Opportunities
35(34)
Three Examples of Current Capabilities for Modeling and Testing
36(7)
Projectile Penetration of High-Strength Aluminum Plates
36(2)
Projectile Penetration of Bilayer Ceramic-Metal Plates
38(2)
Alt-Steel Sandwich Plates for Enhanced Blast Protection: Design, Simulation, and Testing
40(3)
The State of the Art in Experimental Methods
43(8)
Definition of the Length Scales and Timescales of Interest
43(2)
Evaluating Material Behavior at High Strain Rates
45(2)
Investigating Shock Physics
47(2)
Investigating Dynamic Failure Processes
49(1)
Investigating Impact Phenomenology
50(1)
Modeling and Simulation Tools
51(14)
Background and State of the Art
52(13)
New Protection Materials and Material Systems: Opportunities and Challenges
65(4)
Computational Materials Methods
65(3)
Overall Recommendations
68(1)
5 Lightweight Protective Materials: Ceramics, Polymers, and Metals
69(30)
Overview and Introduction
69(1)
Ceramic Armor Materials
70(8)
Crystalline Ceramics: Phase Behavior, Grain Size or Morphology, and Grain Boundary Phases
72(3)
Crystalline Structure of Silicon Carbide
75(2)
Availability of Ceramic Powders
77(1)
Processing and Fabrication Techniques for Armor Ceramics
78(2)
"Green" Compaction
78(1)
Sintering
79(1)
Transparent Armor
80(1)
Transparent Crystalline Ceramics
81(1)
Fibers
82(4)
Effect of Fiber Diameter on Strength in High-Performance Fibers
84(1)
Relating Tensile Properties to Ballistic Performance
84(1)
Approaching the Theoretical Tensile Strength and Theoretical Tensile Modulus
84(1)
The Need for Mechanical Tests at High Strain Rates
85(1)
Ballistic Fabrics
86(3)
Ballistic Testing and Experimental Work on Fabrics
86(1)
Failure Mechanisms of Fabrics
87(1)
Important Issues for Ballistic Performance of Fabrics
87(2)
Metals and Metal-Matrix Composites
89(3)
Desirable Attributes of Metals as Protective Materials
90(1)
Nonferrous Metal Alternatives
91(1)
Adhesives for Armor and for Transparent Armor
92(3)
General Considerations for the Selection of an Adhesive Interlayer
92(1)
Important Issues Surrounding Adhesives for Lightweight Armor Applications
92(2)
Types of Adhesive Interlayers
94(1)
Testing, Simulation, and Modeling of Adhesives
94(1)
Joining
95(1)
Other Issues in Lightweight Materials
96(1)
Nondestructive Evaluation Techniques
96(1)
Fiber-Reinforced Polymer Matrix Composites
97(1)
Overall Findings
97(2)
6 The Path Forward
99(12)
A New Paradigm
99(3)
Recommendations for Protection Materials by Design
102(3)
Element 1 Fundamental Understanding of Mechanisms of Deformation and Failure Due to Ballistic and Blast Threats
102(1)
Element 2 Advanced Computational and Experimental Methods
102(1)
Element 3 Development of New Materials and Material Systems
103(1)
Element 4 Organizational Approach
104(1)
Critical Success Factors for the Recommended New Organizations
105(6)
DoD Center for the PMD Initiative
105(1)
Open PMD Collaboration Center
106(1)
Time Frame for Anticipated Advances
107(4)
APPENDIXES
A Background and Statement of Task
111(2)
B Biographical Sketches of Committee Members
113(2)
C Committee Meetings 1
119(2)
D Improving Powder Production
121(4)
E Processing Techniques and Available Classes of Armor Ceramics
125(11)
F High-Performance Fibers
136(3)
G Failure Mechanisms of Ballistic Fabrics and Concepts for Improvement
139(3)
H Metals as Lightweight Protection Materials
142(6)
I Nondestructive Evaluation for Armor
148(2)
J Fiber-Reinforced Polymer Matrix Composites
150