Atnaujinkite slapukų nuostatas

El. knyga: Optical Illusions in Rome

  • Formatas: 80 pages
  • Serija: Spectrum
  • Išleidimo metai: 30-Jun-2020
  • Leidėjas: American Mathematical Society
  • ISBN-13: 9781470455286
Kitos knygos pagal šią temą:
  • Formatas: 80 pages
  • Serija: Spectrum
  • Išleidimo metai: 30-Jun-2020
  • Leidėjas: American Mathematical Society
  • ISBN-13: 9781470455286
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Optical Illusions in Rome is a beautifully written and richly illustrated guide that takes the reader on a tour through ingenious uses of geometry to create illusory impressions of space and grandeur in Italian Renaissance art and architecture in the Eternal City. The book takes us to some of the most striking and historically important uses of optical illusion and includes works of Peruzzi, Borromini, and Pozzo. The artworks are analyzed geometrically and placed in their historical context. The notes on visiting the art described make the volume the perfect companion for a study trip to Rome. A chapter on the principles of perspective geometry and a collection of exercises make the book a wonderful resource for a module on perspective in a geometry or art history course. The mathematical discussion is kept at a level accessible to a reader with a familiarity with high school geometry.

Kirsti Andersen is a distinguished historian of mathematics and emerita faculty at Aarhus University. Her previous book, The Geometry of an Art, is widely recognized as the definitive work on the history of the use of perspective in European art. Viktor Blasjo, the translator, is a historian of mathematics on the faculty at Utrecht University. Blasjo has won both the Ford and Polya prizes for expository writing from the Mathematical Association of America.
Translator's Introduction v
Acknowledgments ix
Introduction 1(4)
Chapter 1 Trompe L'œil On walls
5(12)
1 Expansions of rooms in antiquity
5(2)
2 Expansions of rooms in the Renaissance
7(1)
3 Peruzzi and the Villa Farnesina
7(2)
4 The virtual expansion of the Sala delle prospettive
9(4)
5 The Renaissance impact of Peruzzi's Sala delle prospettive
13(1)
6 Theatre decors
14(3)
Chapter 2 Three-Dimensional Trompe L'œil
17(12)
1 Borromini and Bernini
18(1)
2 Borromini's colonnade in Palazzo Spada
18(2)
3 The eye point of Borromini's colonnade
20(1)
4 The length of the apparent colonnade
21(2)
5 A later addition to Borromini's colonnade
23(1)
6 Bernini's royal staircase
23(3)
7 Bernini's design of St. Peter's Square
26(3)
Chapter 3 The Anamorphosis in Trinita Dei Monti
29(8)
1 The order of the Minims
29(2)
2 Niceron's construction of an anamorphic grid
31(1)
3 Maignan's anamorphosis
31(4)
4 Mirror anamorphoses
35(2)
Chapter 4 Ceilings As Image Surfaces
37(14)
1 The order of the Jesuits
37(1)
2 Pozzo, the master of illusionistic art
38(2)
3 The dome of Santlgnazio
40(5)
4 The decoration of the central nave of Sant'lgnazio
45(6)
Chapter 5 Some Results from Perspective Theory
51(10)
Chapter 6 Exercises
61(8)
1 Exercises for
Chapter 1
61(1)
2 Exercises for
Chapter 2
62(3)
3 Exercises for
Chapter 3
65(1)
4 Exercises for
Chapter 4
66(1)
5 Exercises for
Chapter 5
67(2)
Notes for the Traveller 69(2)
Endnotes 71(2)
Bibliography 73(5)
Sources of the Illustrations 78
Kirsti Andersen, Aarhus University, Denmark.