Atnaujinkite slapukų nuostatas

Opto-structural Analysis [Kietas viršelis]

  • Formatas: Hardback, 480 pages, weight: 1183 g
  • Serija: Press Monographs
  • Išleidimo metai: 30-Dec-2018
  • Leidėjas: SPIE Press
  • ISBN-10: 151061933X
  • ISBN-13: 9781510619333
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 480 pages, weight: 1183 g
  • Serija: Press Monographs
  • Išleidimo metai: 30-Dec-2018
  • Leidėjas: SPIE Press
  • ISBN-10: 151061933X
  • ISBN-13: 9781510619333
Kitos knygos pagal šią temą:
This book presents basic structural deformation and stress analysis as applied to optical systems. It provides the tools for first-order analyses required in the design concept phase before handling the intricate details of a full-up design. While finite element analysis is paramount to a successful design, the purpose of this text is not to use finite element analysis to validate the hand analysis, but rather to use hand analysis to validate the finite element models. The hand analysis forces a discipline that is paramount in the understanding of structural behavior. Presuming that the reader has a working knowledge in the strength of materials, the text applies engineering principles to opto-structural analysis.
Preface xvii
Acknowledgments xix
A Note on Units xxi
1 Stress and Strain 1(30)
1.1 Introduction
1(1)
1.2 Hooke's Law
1(3)
1.3 Beyond Tension, Compression, and Shear
4(8)
1.3.1 Bending stress
4(2)
1.3.1.1 Combined normal stress
6(1)
1.3.2 Bending deflection
6(1)
1.3.3 Shear stress due to bending
7(2)
1.3.4 Shear deflection due to bending (detrusion)
9(1)
1.3.5 Torsion
10(2)
1.3.5.1 Twist rotation
12(1)
1.3.6 Hooke's law summary
12(1)
1.4 Combining Stresses
12(3)
1.4.1 Brittle and ductile materials
14(1)
1.5 Examples for Consideration
15(3)
1.6 Thermal Strain and Stress
18(10)
1.6.1 Thermal hoop stress
20(3)
1.6.1.1 Solid disk in ring
22(1)
1.6.2 Ring in ring in ring
23(3)
1.6.2.1 Case study
25(1)
1.6.3 Nonuniform cross-section
26(2)
1.7 Buckling
28(1)
References
29(2)
2 Material Properties 31(28)
2.1 Properties and Definitions
31(2)
2.2 Low-Thermal-Expansion Materials
33(16)
2.2.1 Fused silica
38(1)
2.2.2 ULE® fused silica
39(1)
2.2.3 ZERODUR®
40(1)
2.2.4 Silicon
41(1)
2.2.5 Silicon carbide
41(1)
2.2.6 Graphite composites
41(1)
2.2.7 Invar®
42(2)
2.2.7.1 CTE and stability
42(1)
2.2.7.2 CTE and temperature
43(1)
2.2.7.3 Invar 36 varieties
44(1)
2.2.8 Iron-nickel varieties
44(3)
2.2.9 The iron-nickel family
47(1)
2.2.10 Governing specifications
47(1)
2.2.11 Invar summary
48(1)
2.3 Not-So-Low-Thermal-Expansion Materials
49(2)
2.3.1 Aluminum
50(1)
2.3.2 Beryllium
50(1)
2.3.3 Aluminum-beryllium
51(1)
2.3.4 Optical metering
51(1)
2.4 Very High-Thermal-Expansion Materials
51(3)
2.4.1 Plastics
51(1)
2.4.2 Adhesives
52(2)
2.5 Strength
54(4)
2.5.1 Failure to load
54(1)
2.5.2 Yield
55(1)
2.5.3 Micro-yield
56(1)
2.5.4 Brittle materials
56(1)
2.5.5 Safety factor
57(1)
2.5.6 Summary
58(1)
References
58(1)
3 Kinematic Mounts 59(30)
3.1 Kinematics
59(3)
3.2 Quasi-static Kinematic Mount
62(1)
3.3 Flexure Analysis
63(7)
3.3.1 Rotational compliance about a radial line
64(2)
3.3.2 Analysis: constrained degrees of freedom
66(3)
3.3.2.1 Example for consideration
68(1)
3.3.3 Analysis: compliant degrees of freedom
69(1)
3.3.3.1 Example for consideration
70(1)
3.4 Bipod
70(8)
3.4.1 Analysis: constrained degree of freedom
72(3)
3.4.1.1 Optimum base angle
74(1)
3.4.2 Analysis: compliant degrees of freedom
75(3)
3.4.2.1 Example for consideration
76(2)
3.5 Timmy Curves
78(3)
3.5.1 Examples
79(1)
3.5.2 Other effects
80(1)
3.6 A Better Bipod
81(5)
3.6.1 Analysis: constrained degrees of freedom
81(2)
3.6.2 Analysis: compliant degrees of freedom
83(1)
3.6.3 Example for reconsideration
84(2)
3.7 An Alternative Bipod
86(1)
3.8 Stroke Algorithm
86(2)
References
88(1)
4 Solid Optics: Performance Analysis 89(42)
4.1 Wavefront Error and Performance Prediction
89(6)
4.2 Mount-Induced Error
95(4)
4.2.1 Tangential moment
96(2)
4.2.2 Radial load
98(1)
4.2.3 Example for consideration
98(1)
4.2.4 Radial and axial moments
99(1)
4.3 Gravity Error
99(7)
4.3.1 Optical axis vertical
100(3)
4.3.1.1 Edge mount
100(1)
4.3.1.2 Internal mount
101(1)
4.3.1.3 Example for consideration
102(1)
4.3.2 Optical axis horizontal
103(1)
4.3.2.1 Edge mount
103(1)
4.3.2.2 Internal mount
103(1)
4.3.2.3 Example for consideration
104(1)
4.3.3 Zero-gravity test
104(1)
4.3.4 Other angles
104(1)
4.3.5 Brain teaser
105(1)
4.4 Temperature Soak
106(4)
4.5 Thermal Gradient
110(6)
4.5.1 Examples for consideration
112(1)
4.5.2 Nonlinear gradients
112(1)
4.5.3 Examples for consideration
113(2)
4.5.4 Other gradients
115(1)
4.6 Coating and Cladding
116(6)
4.6.1 Examples
120(2)
4.7 Rule of Mixtures
122(2)
4.7.1 Two layers
122(2)
4.7.1.1 Example
123(1)
4.7.2 Multiple layers
124(1)
4.8 Trimetallic Strip
124(4)
4.8.1 Example
127(1)
4.9 Random Variations in the Coefficient of Thermal Expansion
128(2)
4.9.1 Example
130(1)
References
130(1)
5 Lightweight Optics: Optimization 131(34)
5.1 Lightweight Optics
131(2)
5.2 Core Shape
133(3)
5.2.1 Core geometry
133(2)
5.2.2 Example
135(1)
5.3 Core Stiffness
136(2)
5.4 Partially Closed-Back Optics
138(1)
5.5 Polish
138(3)
5.5.1 Example
140(1)
5.5.2 Advanced polish
140(1)
5.6 Weight Optimization
141(3)
5.6.1 Example
143(1)
5.7 Stiffness Criteria
144(8)
5.7.1 Examples
145(7)
5.8 Stiffness Optimization
152(3)
5.9 The Great Debate
155(9)
5.9.1 Closed-back geometry
155(1)
5.9.2 Open-back geometry
155(1)
5.9.3 Open-and closed-back design comparisons
156(2)
5.9.4 Shear deflection
158(1)
5.9.5 Anisotropy
159(1)
5.9.6 Analytical comparison
160(2)
5.9.7 And the winner is...
162(2)
References
164(1)
6 Lightweight Optics: Performance Error 165(14)
6.1 Mount-Induced Error
165(1)
6.1.1 Tangential moment
165(1)
6.1.2 Radial and axial moments
166(1)
6.2 Gravity
166(1)
6.2.1 Optical axis vertical
166(1)
6.2.2 Optical axis horizontal
167(1)
6.3 Gradients
167(1)
6.3.1 Nonlinear temperature gradients
167(1)
6.3.2 Example
168(1)
6.4 Coating and Cladding
168(1)
6.4.1 Quilt error
169(1)
6.5 Random Variations in the Coefficient of Thermal Expansion
169(1)
6.6 All Shapes and Sizes
170(7)
6.6.1 A case study
172(7)
6.6.1.1 Manufacturing
175(1)
6.6.1.2 Fabrication postscript
176(1)
References
177(2)
7 Large Optics 179(36)
7.1 Multipoint Mounts
179(2)
7.1.1 Example for consideration
180(1)
7.2 Zonal Mount
181(1)
7.3 Hindle Mount
182(1)
7.4 Active Mount
182(3)
7.4.1 Active-mount correctability illustration
183(2)
7.4.2 An active-mount mechanism
185(1)
7.5 Large-Aspect-Ratio Optics
185(21)
7.5.1 Funny things happen at infinity
185(2)
7.5.1.1 A case study
186(1)
7.5.2 How large is large?
187(2)
7.5.3 Cladding
189(1)
7.5.4 Coating
190(1)
7.5.5 Humidity
190(2)
7.5.6 Thermal soak CTE variation
192(1)
7.5.7 Thermal gradient
192(3)
7.5.7.1 Theoretical analytical solution
193(2)
7.5.7.2 Thermal performance under various conditions
195(1)
7.5.8 Metrology
195(1)
7.5.9 Gravity
196(1)
7.5.10 Edge machining
197(4)
7.5.11 Delayed elasticity
201(5)
7.6 Performance Comparisons
206(1)
7.7 How Low Can You Go?
207(2)
7.8 Extremely Large-Aspect-Ratio Optics
209(2)
7.9 Summary
211(2)
References
213(2)
8 Figures of Merit 215(22)
8.1 Mechanical Figures of Merit
215(3)
8.2 Thermal Figure of Merit
218(2)
8.3 Combined Figures of Merit
220(1)
8.4 True Mechanical Figures of Merit
220(8)
8.4.1 Weight and performance figures of merit
221(7)
8.4.1.1 Gravity weight: equal performance
222(1)
8.4.1.2 Gravity performance: equal weight
223(3)
8.4.1.3 Mount weight: equal performance
226(1)
8.4.1.4 Mount performance: equal weight
227(1)
8.4.1.5 Coating and cladding FOMs
227(1)
8.5 Strength-to-Weight Ratio
228(4)
8.5.1 Gravitational acceleration: bending
229(3)
8.5.2 External bending load and gravity acceleration
232(1)
8.6 Graphical Summary
232(1)
8.7 Lightweight Optics
233(1)
8.8 Examples
233(2)
8.8.1 Examples for consideration
234(3)
8.8.1.1 Solid optics
234(1)
8.8.1.2 Lightweight optics
235(1)
References
235(2)
9 Adhesives 237(32)
9.1 Mechanical Properties
237(4)
9.1.1 Elastic modulus
237(3)
9.1.2 Static strength
240(1)
9.1.3 Peel strength
241(1)
9.2 Load Stress Distribution
241(2)
9.3 Glass-Liquid Transition
243(3)
9.3.1 Glass transition temperature creep
245(1)
9.4 Temperature Creep
246(2)
9.5 Lap shear strength
248(4)
9.5.1 Surface preparation
249(3)
9.5.1.1 Definitions
249(1)
9.5.1.2 Adhesion failure
250(2)
9.6 Thermal Stress
252(6)
9.6.1 Thermal stress at boundaries
253(5)
9.6.1.1 Cemented doublet
257(1)
9.6.1.2 Example for consideration
257(1)
9.7 Modeling Techniques
258(4)
9.7.1 Element size
258(1)
9.7.2 Thermal stress
259(4)
9.7.2.1 A case study
260(2)
9.8 Fillets
262(1)
9.9 Soft Elastomers
263(5)
9.9.1 Example for consideration
266(1)
9.9.2 Athermalization
266(7)
9.9.2.1 Example for consideration
267(1)
References
268(1)
10 Simple Dynamics 269(22)
10.1 Basics
269(4)
10.2 A Useful Relationship
273(1)
10.2.1 Rotational frequency
273(1)
10.2.2 Example
274(1)
10.3 Random Vibration
274(3)
10.3.1 Example
275(1)
10.3.2 Decibels
276(1)
10.4 Force Limits
277(4)
10.4.1 Response limiting
280(1)
10.5 Shipping Vibration
281(3)
10.5.1 Drop shock
282(2)
10.5.1.1 Examples
283(1)
10.6 Acceleration Shock
284(5)
10.6.1 Example
285(1)
10.6.2 Variable acceleration
285(2)
10.6.3 Lift equipment
287(1)
10.6.4 Pyrotechnic shock
287(2)
References
289(2)
11 Fatigue 291(20)
11.1 Cyclic Fatigue
291(1)
11.1.1 High-cycle fatigue
292(1)
11.2 S-N Method
292(2)
11.2.1 Example for consideration
293(1)
11.3 Nonzero Mean Stress
294(9)
11.3.1 Example
295(1)
11.3.2 R ratio
296(2)
11.3.2.1 Examples
296(2)
11.4 Fracture Mechanics Method
298(5)
11.4.1 Stress intensity
299(1)
11.4.2 I love Paris
300(1)
11.4.3 Case study
300(3)
11.5 Random Vibration Fatigue
303(7)
11.5.1 Miner's rule: discrete
304(3)
11.5.1.1 Example for consideration
306(1)
11.5.1.2 Random fatigue equivalency
306(1)
11.5.1.3 Sample random fatigue equivalency
307(1)
11.5.2 Miner's rule: continuous
307(1)
11.5.3 Multiple degrees of freedom
308(4)
11.5.3.1 Example for consideration
309(1)
References
310(1)
12 Brittle Materials 311(30)
12.1 Theoretical Strength
311(1)
12.2 Failure Modes
312(3)
12.2.1 Mode I failure description
313(1)
12.2.2 Residual stress
314(1)
12.3 Strength Theory
315(3)
12.3.1 General strength equation: residual stress free
315(1)
12.3.2 Finite bodies and free-surface correction
316(1)
12.3.3 General point flaws
316(1)
12.3.4 The basic fracture mechanics equation
317(1)
12.3.5 Example for consideration
318(1)
12.4 Strength with Residual Stress
318(3)
12.4.1 Combined residual stress and applied stress
319(1)
12.4.2 Crack stability
319(1)
12.4.3 Strength with residual stress and applied stress
319(2)
12.4.4 Example for consideration
321(1)
12.5 Stress Corrosion
321(6)
12.5.1 Definitions
321(1)
12.5.2 Chemically active environment
322(1)
12.5.3 Reaction rates
322(1)
12.5.4 I love Paris
323(2)
12.5.5 Crack growth regions
325(1)
12.5.6 Region I relation
326(1)
12.5.7 Example for consideration
327(1)
12.6 Stress Corrosion Free of Residual Stress
327(3)
12.6.1 Examples for consideration
329(1)
12.7 Stress Corrosion with Residual Stress
330(4)
12.7.1 A complex integration
330(1)
12.7.2 Computation of constants and resulting time to failure
331(1)
12.7.3 Examples for consideration
332(1)
12.7.4 Obtaining constants and failure time
333(1)
12.8 Dynamic Fatigue
334(2)
12.8.1 Example for consideration
335(1)
12.9 An Approximation Technique
336(1)
12.10 Overload Proof Test
336(3)
12.10.1 Application to ceramics
337(1)
12.10.2 Examples for consideration
337(2)
References
339(2)
13 Performance Analysis of Optical Structures 341(28)
13.1 Supporting Optics
341(1)
13.2 Metering Despace
342(1)
13.2.1 Example for consideration
342(1)
13.3 Decentration and Tip
343(1)
13.3.1 Example for consideration
343(1)
13.3.2 Gravity and frequency
344(1)
13.4 Structure Forms
344(1)
13.5 Metering Truss Design
345(13)
13.5.1 Serrurier truss
345(2)
13.5.2 Thermal expansion
347(2)
13.5.3 Athermalized truss: a design before its time
349(5)
13.5.3.1 Example for consideration
353(1)
13.5.4 Composite metering structure
354(18)
13.5.4.1 Moisture
357(1)
13.6 Case Study: Teal Ruby Telescope
358(8)
13.7 Support Structure
366(1)
References
367(2)
14 Nuts and Bolts 369(26)
14.1 Terminology
369(2)
14.2 Bolt Material
371(1)
14.3 Bolt Stress
372(3)
14.3.1 Shear
373(1)
14.3.2 Thread shear
373(2)
14.4 Stress Examples
375(1)
14.5 Bolt Load
376(5)
14.5.1 Preload
376(2)
14.5.2 Externally applied load
378(2)
14.5.3 External load vibration: bolt fatigue
380(1)
14.5.4 Example for consideration
380(1)
14.6 Thermal Load
381(3)
14.6.1 Examples
382(2)
14.7 Washers
384(3)
14.7.1 Flat washers
384(1)
14.7.2 Lock washers
384(1)
14.7.3 Lock nuts
385(1)
14.7.4 Locking and staking
385(2)
14.7.5 Spring washers
387(1)
14.8 Friction Slip and Pins
387(3)
14.8.1 Friction
387(1)
14.8.2 Pins
388(1)
14.8.2.1 Bearing stress
388(1)
14.8.3 Shear tearout
389(1)
14.8.4 Example for consideration
390(1)
14.9 Combined Bolt Loads
390(4)
14.9.1 The bolt circle
391(5)
14.9.1.1 Example
393(1)
References
394(1)
15 Linear Analysis of Nonlinear Properties 395(18)
15.1 Linear Theory
395(1)
15.2 Nonlinear Systems: Secant and Tangent Properties
396(4)
15.2.1 Thermal expansion coefficient
398(1)
15.2.2 Elastic modulus
398(2)
15.3 Nonlinear Modulus
400(1)
15.4 Nonlinear Thermal Stress
401(1)
15.5 Special Theory
402(3)
15.5.1 Constant CTE
402(2)
15.5.2 Constant modulus
404(1)
15.6 General Theory
405(2)
15.6.1 Example for consideration
406(1)
15.7 Using Secants
407(1)
15.8 Sample Problems
408(5)
16 Miscellaneous Analysis 413(36)
16.1 Venting
413(1)
16.1.1 Contaminants
414(1)
16.2 Stress Birefringence
414(3)
16.2.1 Coating-induced birefringence
415(1)
16.2.2 Residual stress
416(1)
16.3 Bonded Tubes and Grooves
417(4)
16.3.1 Bending moment
417(3)
16.3.2 Axial load
420(1)
16.3.3 Torsion
420(1)
16.3.4 Shear
420(1)
16.3.5 Tube over boss
420(1)
16.3.6 Square boss
421(1)
16.4 Bonded Flexures
421(5)
16.4.1 Example for consideration
425(1)
16.5 Contact Stress
426(9)
16.5.1 Ball-on-flat formulation
426(1)
16.5.2 Ball-in-cone formulation
427(1)
16.5.2.1 Examples for consideration
427(1)
16.5.3 Ball-in-cone analysis
428(2)
16.5.4 Kinematic coupling
430(3)
16.5.4.1 Contact stress
431(1)
16.5.4.2 Example
432(1)
16.5.5 Allowable load: Hertzian stress
433(2)
16.6 Friction
435(2)
16.6.1 Surface roughness
437(1)
16.7 Large Displacements
437(1)
16.8 Windows
438(1)
16.8.1 Bending
438(1)
16.8.2 Lateral thermal gradient
438(1)
16.9 Dimensional Instability
439(7)
16.9.1 Glass transition temperature
440(1)
16.9.2 Hysteresis
440(1)
16.9.3 External stress relation
441(1)
16.9.4 Creep
442(1)
16.9.5 Glass and ceramics
442(1)
16.9.6 Invar 36
442(1)
16.9.7 Internal (residual) stress
443(2)
16.9.7.1 Deposition residual stress
443(2)
16.9.7.2 Machining residual stress
445(1)
16.9.8 Metal optics
445(1)
References
446(3)
Epilogue 449(2)
Index 451