Atnaujinkite slapukų nuostatas

El. knyga: Oriented Projective Geometry: A Framework for Geometric Computations

  • Formatas: PDF+DRM
  • Išleidimo metai: 10-May-2014
  • Leidėjas: Academic Press Inc
  • Kalba: eng
  • ISBN-13: 9781483265193
  • Formatas: PDF+DRM
  • Išleidimo metai: 10-May-2014
  • Leidėjas: Academic Press Inc
  • Kalba: eng
  • ISBN-13: 9781483265193

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Intended for computer graphics researchers and programmers, and mathematicians working in computational geometry. This book describes oriented projective geometry, a geometric model that combines the elegance and efficiency of classical projective geometry with the consistent handling of oriented lines and planes, signed angles, line segments, convex sets, and many other fundamental geometric computing concepts that classical theory does not support. The aim of this book is to assemble a consistent, practical and effective set of tools for computational geometry that can be used by graphics programmers in their everyday work. In keeping with this goal, formal derivations are kept to a minimum, and many definitions and theorems are illustrated with explicit examples in one, two, and three dimensions.
Part 1 Projective geometry: the classic projective plane; advantages of
projective geometry; drawbacks of classical projective geometry; oriented
projective geometry; related work. Part 2 Oriented projective spaces: models
of two-sided space; central projection. Part 3 Flats: definition; points;
lines; planes; three-spaces; ranks; incidence and dependence. Part 4
Simplices and orientation: simplices; simplex equivalence; point location
relative to a simplex; the vector space model. Part 5 The join operation: the
join of two points; the join of a point and a line; the join of two arbitrary
flats; properties of join; null objects; complementary flats. Part 6 The
meeting operation: the meeting point of two lines; the general meet
operation; meet in three dimensions; properties of meet. Part 7 Relative
orientation: the two sides of a line; relative position of arbitrary flats;
the separation theorem; the coefficients of a hyperplane. Part 8 Projective
maps: formal definition; examples; properties of projective maps; the matrix
of a map. Part 9 General: two-sided spaces - formal definition; subspaces.
Part 10 Duality: duomorphisms; the polar complement; polar complements as
duomorphisms; relative polar complements; general duomorphisms; the power of
duality. Part 11 Generalized projective maps: projective functions; computer
representation. Part 12 Projective frames: nature of projective frames;
classification of frames; standard frames; coordinates relative to a frame.
Part 13 Cross ratio: cross ratio in unoriented geometry; cross ratio in the
oriented framework. Part 14 Convexity: convexity in classical projective
space; convexity in oriented projective spaces; properties of convex sets;
the half-space property; the convex hull; convexity and duality. Part 15
Affine geomerty: the Cartesian connection; two-sided affine spaces. Part 16
Vector albegra: two-sided vector spaces; translations; vector algebra; the
two-sided real line; linear maps. Part 17 Euclidean geometry on the two-sided
plane: perpendicularity; two-sided Euclidean spaces; Euclidean maps; length
and distance; angular measure and congruence; non-Euclidean geometries. Part
18 Representing flats by simplices: the simplex representation; the dual
simplex representation; the reduced simplex representation. Part 19 Plucker
coordinates: the canonical embedding; Plucker coefficients; storage
efficiency; the Grassmann manifolds. Part 20 Formulas for Plucker
coordinates: algebraic formulas; formulas for computers; projective maps in
Plucker coordinates; directions and parallelism.