Atnaujinkite slapukų nuostatas

El. knyga: On The Origin Of Planets: By Means Of Natural Simple Processes

(University Of York, Uk)
  • Formatas: 500 pages
  • Išleidimo metai: 23-Sep-2010
  • Leidėjas: Imperial College Press
  • Kalba: eng
  • ISBN-13: 9781908977922
Kitos knygos pagal šią temą:
  • Formatas: 500 pages
  • Išleidimo metai: 23-Sep-2010
  • Leidėjas: Imperial College Press
  • Kalba: eng
  • ISBN-13: 9781908977922
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

The book begins with a historical review of four major theories for the origin of the Solar System in particular, or of planets in general, which highlight the major problems that need to be solved by any plausible theory. In many theories, including that which forms the major theme of this book, the formation of planets and stars is intimately linked, so four chapters are devoted to the processes that can be described as the birth, life and death of stars.

Recent observations that have revealed the existence of planets around many Sun-like stars are described in detail, followed by a clear exposition of the Capture Theory for the origin of planets. Many aspects of this theory are illustrated with sophisticated computer modelling that convincingly demonstrates the plausibility of the theory. The Capture Theory is in complete accord with all observations, including the estimate it gives for the proportion of Sun-like stars with planets. It is the only theory that sits comfortably with all present observational and theoretical constraints.

The general theory of planet formation does not explain the detailed structure of the Solar System. An early postulated collision of two major planets is shown to explain many disparate features of the Solar System --- the nature of the terrestrial planets, surface features of the Moon and its relationship with Earth, asteroids, comets and dwarf planets, the relationship between Neptune, Triton and Pluto and the characteristics of meteorites, including the isotopic anomalies found in them. The postulate of a planetary collision is given support by a 2009 NASA observation of the residue of such an event around a distant young star.

Preface v
An Historical Sketch of the Progress of Opinion on the Origin of Planets xix
1 Observations of Stars
1(18)
1.1 Locations of Stars
1(3)
1.2 Stellar Material
4(1)
1.3 Determining the Distances of Stars
5(4)
1.3.1 The distances of nearby stars
5(2)
1.3.2 Distance measurements using variable stars
7(2)
1.4 The Temperature of Stars
9(3)
1.5 Stellar Radii
12(1)
1.6 Estimating Stellar Masses
13(1)
1.7 The Physical Properties of Main-Sequence Stars
14(1)
1.8 Stellar Spin Rates
15(1)
1.9 Summary
15(4)
2 Producing Protostars --- Embryonic Stars
19(20)
2.1 Star-Forming Regions
19(2)
2.2 The Formation of Dense Cool Clouds
21(5)
2.3 Maser Emission from Star-Forming Regions
26(1)
2.4 The Process of Protostar Formation
27(1)
2.5 The Formation of Binary Systems
28(4)
2.6 Modelling the Collapse of a Cloud
32(1)
2.7 The Spin of Stars
33(3)
2.8 Summary
36(3)
3 The Life and Death of a Star
39(16)
3.1 The Journey to the Main Sequence
39(3)
3.2 Energy Generation in Main-Sequence Stars
42(4)
3.3 Leaving the Main Sequence for Low-and Moderate-Mass Stars
46(4)
3.4 The Evolution of Higher-Mass Stars
50(3)
3.5 Summary
53(2)
4 The Evolution of a Galactic Cluster
55(10)
4.1 Embedded Clusters
55(3)
4.2 The Formation of Massive Stars
58(2)
4.3 The Embedded Cluster Environment and Binary Star Frequencies
60(1)
4.4 The Progress of Star Formation in a Galactic Cluster
61(1)
4.5 Summary
62(3)
5 Exoplanets --- Planets Around Other Stars
65(20)
5.1 Planets Orbiting Neutron Stars
65(3)
5.2 The Characteristics of Orbits
68(1)
5.3 Planets Around Main-Sequence Stars; Doppler-Shift Detection
69(8)
5.4 The Direct Imaging of Exoplanets
77(5)
5.5 Exoplanets and the Solar System
82(1)
5.6 Summary
83(2)
6 The Formation of Planets: The Capture Theory
85(10)
6.1 The Interaction of a Star with a Protostar
86(4)
6.2 The Interaction of a Star with a High-Density Region
90(3)
6.3 Summary
93(2)
7 Orbital Evolution
95(24)
7.1 The Nature of the Disk
96(3)
7.2 The Force on a Planet Due to the Medium
99(2)
7.2.1 Viscosity-based resistance
99(1)
7.2.2 Mass-based resistance
100(1)
7.3 Modelling the Medium and Details of the Calculation Method
101(4)
7.4 Calculations of Orbital Decay and Round-off
105(2)
7.5 Orbits of High Eccentricity
107(6)
7.6 The Range of Semi-Major Axes
113(1)
7.7 Simple Ratios of Orbital Periods
113(1)
7.8 Stellar Spin Axes
114(3)
7.9 Summary
117(2)
8 The Frequency of Planetary Systems
119(12)
8.1 Observations and Observational Constraints
119(3)
8.2 Initial Formation Statistics
122(4)
8.3 The Disruption of Planetary Systems
126(3)
8.4 Summary
129(2)
9 Satellite Formation
131(20)
9.1 Angular Momentum Considerations
132(3)
9.2 The Form of the Disk
135(2)
9.3 The Setting of Dust
137(4)
9.4 The Formation of Satellitesimals
141(3)
9.5 Satellite Formation
144(3)
9.6 Comments
147(1)
9.7 Summary
148(3)
10 Features of the Solar System
151(34)
10.1 The Planets
151(6)
10.1.1 The terrestrial planets
152(2)
10.1.2 The major planets
154(1)
10.1.3 Tilts of planetary spin axes
155(2)
10.2 Satellites
157(15)
10.2.1 The satellites of Jupiter
158(4)
10.2.2 The satellites of Saturn
162(5)
10.2.3 The satellites of Uranus
167(2)
10.2.4 The satellites of Neptune
169(2)
10.2.5 Other satellites
171(1)
10.3 Dwarf Planets and the Kuiper Belt
172(5)
10.4 Asteroids
177(4)
10.4.1 Types of asteroids and their orbits
177(3)
10.4.2 The composition of asteroids
180(1)
10.5 Comets
181(2)
10.6 Summary
183(2)
11 Interactions Between Planets
185(18)
11.1 The Precession of Planetary Orbits
185(1)
11.2 Close Interactions of Planets and the Tilts of Spin Axes
186(4)
11.3 The Problem of the Terrestrial Planets
190(1)
11.4 Deuterium and the Major Planets
191(5)
11.5 Earth and Venus
196(5)
11.6 Summary
201(2)
12 The Moon
203(16)
12.1 The Earth-Moon Relationship
203(3)
12.2 Satellites of the Colliding Planets
206(2)
12.3 Features of the Moon
208(4)
12.4 The Hemispherical Asymmetry of the Moon
212(3)
12.5 The Evolution of the Moon's Orbit
215(2)
12.6 Summary
217(2)
13 Mars and Mercury
219(16)
13.1 Larger Solid Bodies of the Solar System
219(2)
13.2 Mars as a Satellite
221(7)
13.2.1 The hemispherical asymmetry of Mars
221(2)
13.2.2 Mars --- now and in the past
223(3)
13.2.3 The Martian spin axis and hemispherical asymmetry
226(2)
13.3 Mercury as a Satellite
228(4)
13.4 The Orbits, Spins and Tilts of Mercury and Mars
232(1)
13.5 Summary
233(2)
14 Neptune, Triton and Pluto
235(6)
14.1 The Neptune-Pluto Relationship
235(1)
14.2 The Strange Satellites of Neptune
235(2)
14.3 The Neptune --- Triton---Pluto Relationship Explained
237(2)
14.4 Summary
239(2)
15 Dwarf Planets, Asteroids, Comets and the Kuiper Belt
241(14)
15.1 Dwarf Planets
241(4)
15.1.1 Ceres
241(1)
15.1.2 The outer dwarf planets
242(3)
15.2 Asteroids and Comets
245(7)
15.2.1 Asteroids
245(3)
15.2.2 Comets and the Kuiper Belt
248(1)
15.2.3 Long-period comets and the Oort cloud
249(2)
15.2.4 The survival of the Oort cloud
251(1)
15.3 Summary
252(3)
16 Meteorites: Their Physical and Chemical Properties
255(14)
16.1 The Broad Classes of Meteorites
256(2)
16.2 The Physical and Chemical Characteristics of Meteorites
258(6)
16.2.1 Stony meteorites
258(4)
16.2.2 Iron meteorites
262(1)
16.2.3 Stony-iron meteorites
263(1)
16.3 Interpreting the Physical Properties and Appearance of Meteorites
264(2)
16.4 Summary
266(3)
17 Isotopic Anomalies in Meteorites
269(26)
17.1 Isotopes and Anomalies
269(2)
17.2 The Planetary Collision and Nuclear Reactions
271(4)
17.3 Explanations of the Anomalies
275(1)
17.4 Individual Isotopic Anomalies and How They Are Produced
275(16)
17.4.1 The oxygen anomaly
276(3)
17.4.2 The magnesium anomaly
279(3)
17.4.3 Neon in meteorites
282(2)
17.4.4 Anomalies associated with silicon carbide
284(1)
17.4.4.1 Silicon in silicon carbide
284(2)
17.4.4.2 Carbon and nitrogen in silicon carbide
286(2)
17.4.4.3 Neon in silicon carbide
288(3)
17.5 General Remarks Concerning Isotopic Anomalies
291(1)
17.6 Summary
291(4)
18 Overview and Conclusions
295(18)
18.1 What Constitutes a Good Theory?
295(3)
18.2 Protostars and Stars
298(2)
18.3 Creating the Conditions for the Capture-Theory Process
300(1)
18.4 The Capture-Theory Process
301(1)
18.5 The Frequency of Planetary Systems
302(1)
18.6 Satellite Formation
303(1)
18.7 The Tilts of Spin Axes of the Planets and Stars
303(1)
18.8 A Planetary Collision --- Earth and Venus
304(1)
18.9 The Moon, Mars and Mercury
305(2)
18.10 Neptune, Triton and Pluto
307(1)
18.11 Small Bodies of the Solar System
307(1)
18.12 The Characteristics of Meteorites
308(1)
18.13 Conclusions
309(4)
Appendix A Angular Momentum 313(3)
Appendix B Equipotential Surfaces of a Tidally Distorted Star 316(2)
Appendix C The Instability of a Gaseous Filament 318(2)
Appendix D The Jeans Critical Mass 320(2)
Appendix E The Lynden-Bell and Pringle Mechanism 322(2)
Appendix F Grains in Molecular Clouds 324(4)
Appendix G The Structure of a Spiral Galaxy 328(2)
Appendix H The Centre of Mass and the Orbits of Binary Stars 330(3)
Appendix I The Doppler Effect 333(2)
Appendix J Atomic Energy Levels and Stellar Spectra 335(3)
Appendix K Stellar Masses from Observations of Binary Systems 338(3)
Appendix L Smoothed-Particle Hydrodynamics 341(4)
Appendix M Free-Fall Collapse 345(3)
Appendix N Fragmentation and Binary Characteristics 348(3)
Appendix O Spin Slowing Due to a Stellar wind 351(2)
Appendix P The Virial Theorem and Kelvin-Helmholtz Contraction 353(3)
Appendix Q The Lifetime of Stars on the Main Sequence 356(2)
Appendix R The Eddington Accretion Mechanism 358(2)
Appendix S The Mass and Orbit of an Exoplanet 360(1)
Appendix T Radiation Pressure and the Poynting-Robertson Effect 361(3)
Appendix U Active Stars and Their Effect on a Stellar Disk 364(5)
Appendix V The Structure and Decay of a Stellar Disk 369(3)
Appendix W The Formation of Exoplanets 372(4)
Appendix X Disrupting a Planetary System 376(7)
Appendix Y From Dust to Satellitesimals 383(4)
Appendix Z From Satellitesimals to Satellites 387(4)
Appendix AA The Tidal Heating of Io 391(4)
Appendix AB The Trojan Asteroids 395(4)
Appendix AC Orbital Precession 399(2)
Appendix AD The Temperature Generated by Colliding Planets 401(13)
Appendix AE Heating by Deuterium-Based Reactions 414(2)
Appendix AF The Thermal Evolution of the Moon 416(4)
Appendix AG The Abrasion of a Hemisphere of the Moon 420(2)
Appendix AH The Rounding-off of a Highly Eccentric Satellite Orbit 422(4)
Appendix AI Continental Drift on Mars 426(3)
Appendix AJ The Oort Cloud and Perturbing Stars 429(4)
Appendix AK Planetary Perturbation of New Comets 433(2)
Appendix AL Reactions and Decays 435(5)
Appendix AM Cooling and Grain Formation 440(5)
Index 445