Preface |
|
xiv | |
Acknowledgments |
|
xx | |
|
|
1 | (12) |
|
0.1 Why p-adic differential equations? |
|
|
1 | (2) |
|
0.2 Zeta functions of varieties |
|
|
3 | (2) |
|
0.3 Zeta functions and p-adic differential equations |
|
|
5 | (2) |
|
|
7 | (6) |
|
|
8 | (1) |
|
|
9 | (4) |
|
Part I Tools of p-adic Analysis |
|
|
|
1 Norms on algebraic structures |
|
|
13 | (23) |
|
1.1 Norms on abelian groups |
|
|
13 | (3) |
|
1.2 Valuations and nonarchimedean norms |
|
|
16 | (1) |
|
|
17 | (9) |
|
1.4 Examples of nonarchimedean norms |
|
|
26 | (2) |
|
1.5 Spherical completeness |
|
|
28 | (8) |
|
|
32 | (2) |
|
|
34 | (2) |
|
|
36 | (10) |
|
|
36 | (3) |
|
2.2 Slope factorizations and a master factorization theorem |
|
|
39 | (3) |
|
2.3 Applications to nonarchimedean field theory |
|
|
42 | (4) |
|
|
44 | (1) |
|
|
45 | (1) |
|
|
46 | (10) |
|
|
47 | (1) |
|
3.2 Unramified extensions |
|
|
48 | (2) |
|
3.3 Tamely ramified extensions |
|
|
50 | (3) |
|
3.4 The case of local fields |
|
|
53 | (3) |
|
|
54 | (1) |
|
|
55 | (1) |
|
|
56 | (23) |
|
4.1 Singular values and eigenvalues (archimedean case) |
|
|
57 | (4) |
|
4.2 Perturbations (archimedean case) |
|
|
61 | (2) |
|
4.3 Singular values and eigenvalues (nonarchimedean case) |
|
|
63 | (5) |
|
4.4 Perturbations (nonarchimedean case) |
|
|
68 | (4) |
|
|
72 | (7) |
|
|
73 | (2) |
|
|
75 | (4) |
|
Part II Differential Algebra |
|
|
|
5 Formalism of differential algebra |
|
|
79 | (18) |
|
5.1 Differential rings and differential modules |
|
|
79 | (3) |
|
5.2 Differential modules and differential systems |
|
|
82 | (1) |
|
5.3 Operations on differential modules |
|
|
83 | (4) |
|
|
87 | (1) |
|
5.5 Differential polynomials |
|
|
88 | (2) |
|
5.6 Differential equations |
|
|
90 | (1) |
|
5.7 Cyclic vectors: a mixed blessing |
|
|
91 | (2) |
|
|
93 | (4) |
|
|
94 | (1) |
|
|
95 | (2) |
|
6 Metric properties of differential modules |
|
|
97 | (26) |
|
6.1 Spectral radii of bounded endomorphisms |
|
|
97 | (2) |
|
6.2 Spectral radii of differential operators |
|
|
99 | (7) |
|
6.3 A coordinate-free approach |
|
|
106 | (2) |
|
6.4 Newton polygons for twisted polynomials |
|
|
108 | (1) |
|
6.5 Twisted polynomials and spectral radii |
|
|
109 | (2) |
|
6.6 The visible decomposition theorem |
|
|
111 | (2) |
|
6.7 Matrices and the visible spectrum |
|
|
113 | (3) |
|
6.8 A refined visible decomposition theorem |
|
|
116 | (3) |
|
6.9 Changing the constant field |
|
|
119 | (4) |
|
|
120 | (1) |
|
|
121 | (2) |
|
7 Regular and irregular singularities |
|
|
123 | (20) |
|
|
124 | (1) |
|
7.2 Exponents in the complex analytic setting |
|
|
125 | (2) |
|
7.3 Formal solutions of regular differential equations |
|
|
127 | (4) |
|
7.4 Index and irregularity |
|
|
131 | (2) |
|
7.5 The Turrittin-Levelt-Hukuhara decomposition theorem |
|
|
133 | (3) |
|
|
136 | (7) |
|
|
137 | (2) |
|
|
139 | (4) |
|
Part III P-adic Differential Equations on Discs and Annuli |
|
|
|
8 Rings of functions on discs and annuli |
|
|
143 | (18) |
|
8.1 Power series on closed discs and annuli |
|
|
144 | (2) |
|
8.2 Gauss norms and Newton polygons |
|
|
146 | (2) |
|
8.3 Factorization results |
|
|
148 | (3) |
|
8.4 Open discs and annuli |
|
|
151 | (1) |
|
|
152 | (4) |
|
8.6 More approximation arguments |
|
|
156 | (5) |
|
|
158 | (1) |
|
|
159 | (2) |
|
9 Radius and generic radius of convergence |
|
|
161 | (18) |
|
9.1 Differential modules have no torsion |
|
|
162 | (1) |
|
|
163 | (1) |
|
9.3 Radius of convergence on a disc |
|
|
164 | (1) |
|
9.4 Generic radius of convergence |
|
|
165 | (3) |
|
9.5 Some examples in rank 1 |
|
|
168 | (1) |
|
|
168 | (2) |
|
9.7 Geometric interpretation |
|
|
170 | (2) |
|
|
172 | (1) |
|
9.9 Another example in rank 1 |
|
|
173 | (1) |
|
9.10 Comparison with the coordinate-free definition |
|
|
174 | (1) |
|
9.11 An explicit convergence estimate |
|
|
175 | (4) |
|
|
176 | (1) |
|
|
177 | (2) |
|
10 Frobenius pullback and pushforward |
|
|
179 | (17) |
|
|
180 | (1) |
|
10.2 P-th powers and roots |
|
|
180 | (2) |
|
10.3 Moving along Frobenius |
|
|
182 | (2) |
|
10.4 Frobenius antecedents |
|
|
184 | (2) |
|
10.5 Frobenius descendants and subsidiary radii |
|
|
186 | (2) |
|
10.6 Decomposition by spectral radius |
|
|
188 | (4) |
|
10.7 Integrality of the generic radius |
|
|
192 | (1) |
|
10.8 Off-center Frobenius antecedents and descendants |
|
|
193 | (3) |
|
|
194 | (1) |
|
|
195 | (1) |
|
11 Variation of generic and subsidiary radii |
|
|
196 | (18) |
|
11.1 Harmonicity of the valuation function |
|
|
197 | (1) |
|
11.2 Variation of Newton polygons |
|
|
198 | (3) |
|
11.3 Variation of subsidiary radii: statements |
|
|
201 | (2) |
|
11.4 Convexity for the generic radius |
|
|
203 | (1) |
|
11.5 Measuring small radii |
|
|
204 | (1) |
|
|
205 | (3) |
|
|
208 | (1) |
|
11.8 Radius versus generic radius |
|
|
209 | (1) |
|
11.9 Subsidiary radii as radii of optimal convergence |
|
|
210 | (4) |
|
|
212 | (1) |
|
|
212 | (2) |
|
12 Decomposition by subsidiary radii |
|
|
214 | (19) |
|
12.1 Metrical detection of units |
|
|
215 | (1) |
|
12.2 Decomposition over a closed disc |
|
|
216 | (4) |
|
12.3 Decomposition over a closed annulus |
|
|
220 | (2) |
|
12.4 Partial decomposition over a closed disc or annulus |
|
|
222 | (2) |
|
12.5 Decomposition over an open disc or annulus |
|
|
224 | (1) |
|
12.6 Modules solvable at a boundary |
|
|
225 | (1) |
|
12.7 Solvable modules of rank 1 |
|
|
226 | (1) |
|
|
227 | (6) |
|
|
231 | (1) |
|
|
232 | (1) |
|
|
233 | (28) |
|
13.1 P-adic Liouville numbers |
|
|
233 | (3) |
|
13.2 P-adic regular singularities |
|
|
236 | (1) |
|
|
237 | (1) |
|
13.4 Abstract p-adic exponents |
|
|
238 | (2) |
|
13.5 Exponents for annuli |
|
|
240 | (6) |
|
13.6 The p-adic Fuchs theorem for annuli |
|
|
246 | (4) |
|
13.7 Transfer to a regular singularity |
|
|
250 | (3) |
|
13.8 Liouville partitions |
|
|
253 | (8) |
|
|
256 | (1) |
|
|
257 | (4) |
|
Part IV Difference Algebra and Frobenius Modules |
|
|
|
14 Formalism of difference algebra |
|
|
261 | (20) |
|
|
261 | (3) |
|
|
264 | (1) |
|
14.3 Difference-closed fields |
|
|
265 | (2) |
|
14.4 Difference algebra over a complete field |
|
|
267 | (5) |
|
14.5 Hodge and Newton polygons |
|
|
272 | (2) |
|
14.6 The Dieudonne-Manin classification theorem |
|
|
274 | (7) |
|
|
277 | (2) |
|
|
279 | (2) |
|
|
281 | (13) |
|
15.1 A multitude of rings |
|
|
281 | (3) |
|
15.2 Substitutions and Frobenius lifts |
|
|
284 | (2) |
|
15.3 Generic versus special Frobenius |
|
|
286 | (3) |
|
15.4 A reverse filtration |
|
|
289 | (3) |
|
15.5 Substitution maps in the Robba ring |
|
|
292 | (2) |
|
|
292 | (1) |
|
|
293 | (1) |
|
16 Frobenius modules over the Robba ring |
|
|
294 | (17) |
|
16.1 Frobenius modules on open discs |
|
|
294 | (2) |
|
16.2 More on the Robba ring |
|
|
296 | (2) |
|
16.3 Pure difference modules |
|
|
298 | (2) |
|
16.4 The slope filtration theorem |
|
|
300 | (2) |
|
16.5 Harder-Narasimhan filtrations |
|
|
302 | (1) |
|
16.6 Extended Robba rings |
|
|
303 | (1) |
|
16.7 Proof of the slope filtration theorem |
|
|
304 | (7) |
|
|
306 | (2) |
|
|
308 | (3) |
|
Part V Frobenius Structures |
|
|
|
17 Frobenius structures on differential modules |
|
|
311 | (12) |
|
17.1 Frobenius structures |
|
|
311 | (3) |
|
17.2 Frobenius structures and the generic radius of convergence |
|
|
314 | (2) |
|
17.3 Independence from the Frobenius lift |
|
|
316 | (2) |
|
17.4 Slope filtrations and differential structures |
|
|
318 | (1) |
|
17.5 Extension of Frobenius structures |
|
|
319 | (1) |
|
17.6 Frobenius intertwiners |
|
|
320 | (3) |
|
|
321 | (1) |
|
|
322 | (1) |
|
18 Effective convergence bounds |
|
|
323 | (15) |
|
|
324 | (1) |
|
18.2 Effective bounds for solvable modules |
|
|
324 | (4) |
|
18.3 Better bounds using Frobenius structures |
|
|
328 | (3) |
|
|
331 | (3) |
|
|
334 | (4) |
|
|
335 | (1) |
|
|
336 | (2) |
|
19 Galois representations and differential modules |
|
|
338 | (15) |
|
19.1 Representations and differential modules |
|
|
339 | (2) |
|
19.2 Finite representations and overconvergent differential modules |
|
|
341 | (2) |
|
19.3 The unit-root p-adic local monodromy theorem |
|
|
343 | (3) |
|
19.4 Ramification and differential slopes |
|
|
346 | (7) |
|
|
348 | (2) |
|
|
350 | (3) |
|
Part VI The p-adic local monodromy theorem |
|
|
|
20 The p-adic local monodromy theorem |
|
|
353 | (14) |
|
20.1 Statement of the theorem |
|
|
353 | (2) |
|
|
355 | (1) |
|
20.3 Descent of horizontal sections |
|
|
356 | (3) |
|
|
359 | (1) |
|
20.5 When the residue field is imperfect |
|
|
360 | (2) |
|
20.6 Minimal slope quotients |
|
|
362 | (5) |
|
|
363 | (3) |
|
|
366 | (1) |
|
21 The p-adic local monodromy theorem: proof |
|
|
367 | (7) |
|
|
367 | (1) |
|
21.2 Modules of differential slope 0 |
|
|
368 | (2) |
|
|
370 | (1) |
|
21.4 Modules of rank prime to p |
|
|
371 | (1) |
|
|
372 | (2) |
|
|
372 | (1) |
|
|
373 | (1) |
|
22 P-adic monodromy without Frobenius structures |
|
|
374 | (19) |
|
22.1 The Robba ring revisited |
|
|
374 | (1) |
|
22.2 Modules of cyclic type |
|
|
375 | (3) |
|
22.3 A Tannakian construction |
|
|
378 | (4) |
|
22.4 Interlude on finite linear groups |
|
|
382 | (2) |
|
22.5 Back to the Tannakian construction |
|
|
384 | (2) |
|
22.6 Proof of the theorem |
|
|
386 | (1) |
|
22.7 Relation to Frobenius structures |
|
|
387 | (6) |
|
|
389 | (1) |
|
|
390 | (3) |
|
|
|
23 Banach rings and their spectra |
|
|
393 | (6) |
|
|
393 | (1) |
|
23.2 The spectrum of a Banach ring |
|
|
394 | (1) |
|
23.3 Topological properties |
|
|
394 | (2) |
|
23.4 Complete residue fields |
|
|
396 | (3) |
|
|
397 | (1) |
|
|
397 | (2) |
|
24 The Berkovich projective line |
|
|
399 | (12) |
|
|
399 | (2) |
|
24.2 Classification of points |
|
|
401 | (1) |
|
24.3 The domination relation |
|
|
402 | (2) |
|
|
404 | (1) |
|
|
405 | (3) |
|
24.6 Harmonic and subharmonic functions |
|
|
408 | (3) |
|
|
408 | (1) |
|
|
409 | (2) |
|
|
411 | (12) |
|
25.1 The normalized radius of convergence |
|
|
411 | (1) |
|
25.2 Normalized subsidiary radii and the convergence polygon |
|
|
412 | (1) |
|
25.3 A constancy criterion for convergence polygons |
|
|
413 | (2) |
|
25.4 Finiteness of the convergence polygon |
|
|
415 | (2) |
|
25.5 Effect of singularities |
|
|
417 | (1) |
|
|
418 | (1) |
|
25.7 Meromorphic differential equations |
|
|
419 | (1) |
|
25.8 Open discs and annuli |
|
|
420 | (3) |
|
|
421 | (2) |
|
|
423 | (19) |
|
26.1 The index of a differential module |
|
|
423 | (1) |
|
26.2 More on affinoid subspaces of P# |
|
|
424 | (1) |
|
26.3 The Laplacian of the convergence polygon |
|
|
425 | (2) |
|
26.4 An index formula for algebraic differential equations |
|
|
427 | (2) |
|
26.5 Local analysis on a disc |
|
|
429 | (2) |
|
26.6 Local analysis on an annulus |
|
|
431 | (2) |
|
26.7 Some nonarchimedean functional analysis |
|
|
433 | (3) |
|
26.8 Plus and minus indices |
|
|
436 | (2) |
|
26.9 Global analysis on a disc |
|
|
438 | (1) |
|
26.10 A global index formula |
|
|
439 | (3) |
|
|
440 | (1) |
|
|
441 | (1) |
|
27 Local constancy at type-4 points |
|
|
442 | (7) |
|
27.1 Geometry around a point of type 4 |
|
|
442 | (1) |
|
27.2 Local constancy in the visible range |
|
|
443 | (1) |
|
27.3 Local monodromy at a point of type 4 |
|
|
444 | (2) |
|
|
446 | (3) |
|
|
446 | (3) |
|
Appendix A Picard-Fuchs modules |
|
|
449 | (5) |
|
|
449 | (1) |
|
A.2 Frobenius structures on Picard-Fuchs modules |
|
|
450 | (1) |
|
A.3 Relationship with zeta functions |
|
|
451 | (3) |
|
|
452 | (2) |
|
Appendix B Rigid cohomology |
|
|
454 | (6) |
|
B.1 Isocrystals on the affine line |
|
|
454 | (2) |
|
B.2 Crystalline and rigid cohomology |
|
|
456 | (1) |
|
|
457 | (3) |
|
|
458 | (2) |
|
Appendix C P-adic Hodge theory |
|
|
460 | (9) |
|
|
460 | (2) |
|
|
462 | (2) |
|
|
464 | (1) |
|
C.4 Differential equations from (Φ, Γ)-modules |
|
|
465 | (2) |
|
C.5 Beyond Galois representations |
|
|
467 | (2) |
|
|
467 | (2) |
References |
|
469 | (20) |
Index of notation |
|
489 | (2) |
Subject Index |
|
491 | |