Atnaujinkite slapukų nuostatas

El. knyga: p-Adic Valued Distributions in Mathematical Physics

Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

A study of non-Archimedean, and especially p -adic mathematical physics. Basic questions about the nature and possible applications of such a theory are investigated. Interesting physical models are developed like the p -adic universe, where distances can be infinitely large p -adic numbers, energies, and momentum. Two types of measurement algorithms are shown to exist, one generating real values and one generating p -adic values. The mathematical basis for the theory is a well developed non-Archimedean analysis, and subjects that are treated include non-Archimedean valued distributions using analytic test functions, and Gaussian and Feynman non-Archimedean distributions. Annotation copyright Book News, Inc. Portland, Or.

This book is devoted to the study of non-Archimedean, and especially p-adic mathematical physics. Basic questions about the nature and possible applications of such a theory are investigated. Interesting physical models are developed like the p-adic universe, where distances can be infinitely large p-adic numbers, energies and momentums. Two types of measurement algorithms are shown to exist, one generating real values and one generating p-adic values. The mathematical basis for the theory is a well developed non-Archimedean analysis, and subjects that are treated include non-Archimedean valued distributions using analytic test functions, Gaussian and Feynman non-Archimedean distributions with applications to quantum field theory, differential and pseudo-differential equations, infinite-dimensional non-Archimedean analysis, and p-adic valued theory of probability and statistics.
This volume will appeal to a wide range of researchers and students whose work involves mathematical physics, functional analysis, number theory, probability theory, stochastics, statistical physics or thermodynamics.
I First Steps to Non-Archimedean.- II The Gauss, Lebesgue and Feynman
Distributions Over Non-Archimedean Fields.- III The Gauss and Feynman
Distributions on Infinite-Dimensional Spaces over Non-Archimedean Fields.- IV
Quantum Mechanics for Non-Archimedean Wave Functions.- V Functional Integrals
and the Quantization of Non-Archimedean Models with an Infinite Number of
Degrees of Freedom.- VI The p-Adic-Valued Probability Measures.- VII
Statistical Stabilization with Respect to p-adic and Real Metrics.- VIII The
p-adic Valued Probability Distributions (Generalized Functions).- IX p-Adic
Superanalysis.- Bibliographical Remarks.- Open Problems.-
1. Expansion of
Numbers in a Given Scale.-
2. An Analogue of Newtons Method.