Atnaujinkite slapukų nuostatas

El. knyga: Parkinson's Disease Management through ICT: The REMPARK Approach

Edited by (Universitat Politčcnica de Catalunya UPC, Barcelona, Spain), Edited by (Uparkinson Teknon, Grupo Hospitalario Quirón, Barcelona, Spain)

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Parkinson's Disease (PD) is a neurodegenerative disorder that manifests with motor and non-motor symptoms. PD treatment is symptomatic and tries to alleviate the associated symptoms through an adjustment of the medication. As the disease is evolving and this evolution is patient specific, it could be very difficult to properly manage the disease.

The current available technology (electronics, communication, computing, etc.), correctly combined with wearables, can be of great use for obtaining and processing useful information for both clinicians and patients allowing them to become actively involved in their condition.

Parkinson's Disease Management through ICT: The REMPARK Approach presents the work done, main results and conclusions of the REMPARK project (2011 2015) funded by the European Union under contract FP7-ICT-2011-7-287677. REMPARK system was proposed and developed as a real Personal Health Device for the Remote and Autonomous Management of Parkinsons Disease, composed of different levels of interaction with the patient, clinician and carers, and integrating a set of interconnected sub-systems: sensor, auditory cueing, Smartphone and server. The sensor subsystem, using embedded algorithms, is able to detect the motor symptoms associated with PD in real time. This information, sent through the Smartphone to the REMPARK server, is used for an efficient management of the disease.

Implementation of REMPARK will increase the independence and Quality of Life of patients; and improve their disease management, treatment and rehabilitation.
Preface xi
List of Contributors xiii
List of Figures xv
List of Tables xix
List of Abbreviations xxi
1 Parkinson's Disease Management: Trends and Challenges 1(14)
Angels Bayes
Timothy J. Counihan
1.1 Introduction
1(1)
1.2 Impact and Strategies of PD at Different Stages
2(4)
1.2.1 Patients in Early Stages
3(1)
1.2.2 Moderately Affected Patients
4(1)
1.2.3 Severely Affected Patients
5(1)
1.3 QoL in PD
6(2)
1.4 State of Art of Current Trends in PD Management
8(2)
1.5 Needs and Challenges for Optimal PD Manage
10(2)
1.6 Conclusion
12(1)
References
12(3)
2 Objective Measurement of Symptoms in PD 15(12)
Timothy J. Counihan
Angels Bayes
2.1 Advancing Parkinson's Disease: Motor and Non-Motor Fluctuations
15(3)
2.1.1 Motor Fluctuations
16(1)
2.1.2 Non-Motor Fluctuations
17(1)
2.2 Challenges in Documenting "Real-World" Fluctuating PD Symptoms
18(1)
2.3 Emerging Technologies to Monitor Symptom Fluctuations
19(2)
2.4 Challenges in the Use of Inertial Sensor Technology in Monitoring PD Symptoms
21(2)
2.5 Conclusion
23(1)
References
23(4)
3 The REMPARK System 27(32)
Joan Cabestany
J. Manuel Moreno
Rui Castro
3.1 Introduction
27(1)
3.2 REMPARK System Overview
28(4)
3.2.1 The Immediate Level
31(1)
3.2.2 The Mid-Term Level
31(1)
3.3 Definition of the REMPARK System Main Characteristics
32(2)
3.4 Subsystems Specification
34(21)
3.4.1 Sensor Module
35(4)
3.4.2 Auditory Cueing Subsystem
39(5)
3.4.2.1 Gait guidance ACS functional description
39(4)
3.4.2.2 Need of an adaptive ACS
43(1)
3.4.3 Drug Delivery Pump Considerations
44(2)
3.4.4 The smartphone Technical Requirements
46(4)
3.4.5 The REMPARK Platform Architecture and Functionality
50(10)
3.4.5.1 Important functional parts
52(1)
3.4.5.1.1 Rule Engine
52(1)
3.4.5.1.2 Disease Management System .
52(2)
3.4.5.2 Platform technical constraints
54(1)
3.5 Conclusion
55(1)
References
55(4)
4 Assessment of Motor Symptoms 59(32)
Albert Sama
Carlos Perez
Daniel Rodriguez-Martin
Alejandro Rodriguez-Molinero
Sheila Alcaine
Berta Mestre
Anna Prats
M. Cruz Crespo
4.1 Introduction
59(1)
4.2 Decision on the Most Relevant Symptoms to Be Detected and Assessed
60(8)
4.2.1 Subjects
61(1)
4.2.2 Questionnaire
61(1)
4.2.3 Results
62(4)
4.2.3.1 Analysis of the correlation between responses on clinical questions
62(1)
4.2.3.2 Investigation of the clinical relevance of the motor symptoms in the three PD phases (i.e., mild, moderate and advanced)
63(2)
4.2.3.3 Analysis of REMPARK utility for PD patients
65(1)
4.2.4 Discussion and Conclusive Remarks
66(2)
4.3 Methodology and Database to Monitor Motor Symptoms
68(9)
4.3.1 An Artificial Intelligence Approach and the Need of Relevant Data
68(1)
4.3.2 Protocol for the Database Construction
69(5)
4.3.3 Gathered Database Description
74(3)
4.4 Algorithmic Approach and Results
77(12)
4.4.1 Dyskinesia Detection Algorithm
79(1)
4.4.2 Bradykinesia Detection Algorithm
80(2)
4.4.3 Tremor Detection Algorithm
82(2)
4.4.4 Freezing of Gait (FOG) Detection Algorithm
84(2)
4.4.5 Gait Parameters Estimation
86(1)
4.4.6 Fall Detection Algorithm
87(1)
4.4.7 ON/OFF Motor State Estimation
88(1)
4.5 Conclusions
89(1)
References
89(2)
5 Sensor Sub-System 91(12)
Carlos Perez
Daniel Rodriguez-Martin
5.1 Introduction
91(1)
5.2 Sensor's Data Processing Flow
92(1)
5.3 Hardware Requirements
92(5)
5.3.1 Memory Requirements
94(1)
5.3.2 Sampling Frequency and Full-Scale Values
94(1)
5.3.3 Time Restrictions on the On-Line Implementation
95(2)
5.4 Sensor Device Components
97(3)
5.4.1 Microcontroller
97(1)
5.4.2 Accelerometer Details
98(1)
5.4.3 Bluetooth Module
98(1)
5.4.4 Power Management
99(1)
5.4.5 External Memory Unit
100(1)
5.5 Sensor Casing and Operation
100(2)
5.6 Conclusion
102(1)
References
102(1)
6 User Interaction 103(32)
Ana Correira de Barros
Joao Cevada
Ricardo Graca
6.1 Introduction
103(2)
6.2 State of the Art/Competitive Analysis
105(5)
6.3 Interaction Guidelines for Users with Parkinson's Disease
110(3)
6.4 User Research and User-Centred Design Processes
113(8)
6.5 Final Usability Tests
121(6)
6.5.1 Research Questions
122(1)
6.5.2 Sample
122(1)
6.5.3 Protocol, Script and Metrics
123(1)
6.5.4 Results
123(1)
6.5.4.1 Appointment test
124(1)
6.5.4.2 Medication test
125(2)
6.6 Conclusions after the User-Centred Process
127(2)
6.7 Characteristics of REMPARK Smartphone Applications
129(3)
6.8 Some Concluding Remarks
132(1)
References
133(2)
7 Actuator Sub-System: The Auditory Cueing 135(24)
Vania Guimaraes
Rui Castro
Angels Bayes
Carlos Perez
Daniel Rodriguez-Martin
7.1 Introduction
135(1)
7.2 Cueing Strategies for Gait in Parkinson's Disease
136(3)
7.3 State of the Art: Competitive Analysis
139(4)
7.4 REMPARK Auditory Cueing System (ACS)
143(4)
7.5 Outcomes from Field Trials: Future Considerations
147(1)
7.6 A Step Further in REMPARK: Automatic Drug Administration
148(6)
7.7 Conclusion
154(1)
References
155(4)
8 Disease Management System (DMS) 159(20)
Hadas Lewy
8.1 Introduction
159(2)
8.2 Disease Management System Application
161(8)
8.3 DMS Functional Organization
169(1)
8.4 Advantages Using the Disease Management System (DMS)
170(6)
8.4.1 Advantages for the Clinical Team
170(2)
8.4.2 Advantages for the Patients
172(2)
8.4.3 Advantages for the Organization
174(2)
8.5 Conclusions, Discussion and Vision
176(1)
References
177(2)
9 REMPARK System Assessment: Main Results 179(32)
Albert Sama
J. Manuel Moreno
Carlos Perez
Joan Cabestany
Angels Bayes
Jordi Rovira
9.1 Introduction
179(1)
9.2 Description of Main Communication Flows
180(7)
9.2.1 Type of Transmitted Information
180(3)
9.2.2 Security Aspects
183(1)
9.2.3 Final Deployment and Implementation of the REMPARK Platform
184(3)
9.3 Pilot for the REMPARK System Assessment: Description
187(7)
9.3.1 Definition of the Pilots' Objectives and Eligibility Criteria
187(2)
9.3.2 Design of the Study
189(3)
9.3.3 Pre-Pilot Conclusions
192(2)
9.4 REMPARK Pilots' Execution and Obtained Results
194(10)
9.4.1 Performance of the System
196(2)
9.4.2 Validity of the ON-OFF Detection Algorithm
198(4)
9.4.2.1 The methodology
198(1)
9.4.2.2 Validation of the ON-OFF diaries: available data
199(1)
9.4.2.3 Results of the ON/OFF state detection
200(2)
9.4.3 Non-Motor Symptoms Descriptive Analysis
202(1)
9.4.4 Efficacy and Effectiveness of the Cueing System
202(2)
9.5 Health-Safety of the REMPARK System
204(1)
9.6 Usability and User Satisfaction of the REMPARK System
204(2)
9.7 Summary and Conclusions
206(2)
References
208(3)
10 Epilogue and Some Conclusions 211(8)
Roberta Annicchiarico
Angels Bayes
Joan Cabestany
10.1 Summary of PD Symptoms and the Influence on QoL
211(1)
10.2 Existing Barriers of PD Management
212(2)
10.3 The Role of the REMPARK System in the Context
214(1)
10.4 Limitations of the REMPARK System
215(2)
10.5 Clinical Applicability of the REMPARK System
217(1)
10.6 As a Concluding Remark
218(1)
References
218(1)
Index 219(4)
About the Editors 223
Joan Cabestany, Angels Bayes