Atnaujinkite slapukų nuostatas

Partial Compactification of Monopoles and Metric Asymptotics [Minkštas viršelis]

  • Formatas: Paperback / softback, 110 pages, aukštis x plotis: 254x178 mm, weight: 600 g
  • Serija: Memoirs of the American Mathematical Society
  • Išleidimo metai: 30-Sep-2023
  • Leidėjas: American Mathematical Society
  • ISBN-10: 1470455412
  • ISBN-13: 9781470455415
Kitos knygos pagal šią temą:
  • Formatas: Paperback / softback, 110 pages, aukštis x plotis: 254x178 mm, weight: 600 g
  • Serija: Memoirs of the American Mathematical Society
  • Išleidimo metai: 30-Sep-2023
  • Leidėjas: American Mathematical Society
  • ISBN-10: 1470455412
  • ISBN-13: 9781470455415
Kitos knygos pagal šią temą:
In the first work in a projected series aimed at studying the asymptotic regions of the monopole moduli spaces, Kottke and Singer construct a partial compactification of the moduli space of magnetic monopoles in which monopoles of charge k decompose into widely separated "monopole clusters" of lower charge going off to infinity at comparable rates. They cover the Bogomolny equations on a scattering manifold, formal 1-parameter families, moduli of ideal monopoles, universal gluing space and parameterized gluing, and the metric. Annotation ©2022 Ringgold, Inc., Portland, OR (protoview.com)
Chris Kottke, New College of Florida, Sarasota, Florida.

Michael Singer, University College London, United Kingdom.