Atnaujinkite slapukų nuostatas

El. knyga: Partial Differential Equations: An Introduction to Analytical and Numerical Methods

  • Formatas: PDF+DRM
  • Serija: Graduate Texts in Mathematics 294
  • Išleidimo metai: 01-Jan-2023
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783031133794
  • Formatas: PDF+DRM
  • Serija: Graduate Texts in Mathematics 294
  • Išleidimo metai: 01-Jan-2023
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783031133794

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This textbook introduces the study of partial differential equations using both analytical and numerical methods. By intertwining the two complementary approaches, the authors create an ideal foundation for further study. Motivating examples from the physical sciences, engineering, and economics complete this integrated approach.





A showcase of models begins the book, demonstrating how PDEs arise in practical problems that involve heat, vibration, fluid flow, and financial markets. Several important characterizing properties are used to classify mathematical similarities, then elementary methods are used to solve examples of hyperbolic, elliptic, and parabolic equations. From here, an accessible introduction to Hilbert spaces and the spectral theorem lay the foundation for advanced methods. Sobolev spaces are presented first in dimension one, before being extended to arbitrary dimension for the study of elliptic equations. An extensive chapter on numerical methods focuses onfinite difference and finite element methods. Computer-aided calculation with Maple completes the book. Throughout, three fundamental examples are studied with different tools: Poissons equation, the heat equation, and the wave equation on Euclidean domains. The BlackScholes equation from mathematical finance is one of several opportunities for extension.





Partial Differential Equations offers an innovative introduction for students new to the area. Analytical and numerical tools combine with modeling to form a versatile toolbox for further study in pure or applied mathematics. Illuminating illustrations and engaging exercises accompany the text throughout. Courses in real analysis and linear algebra at the upper-undergraduate level are assumed.

Recenzijos

This book would make a good textbook because of the broad selection of material. The book devotes at least some space to every aspect of PDEs one might expect to see in an introductory graduate level course, and then some. An instructor wanting to emphasize one aspect or another may find enough material in the book. The spectrum of material from concrete to abstract gives a well-rounded introduction to partial differential equations. (John D. Cook, MAA Reviews, December 31, 2023)

List of figures
xxii
1 Modeling, or where do differential equations come from
1(28)
1.1 Mathematical modeling
2(2)
1.2 Transport processes
4(4)
1.3 Diffusion
8(1)
1.4 The wave equation
9(2)
1.5 The Black-Scholes equation
11(2)
1.6 Let's get higher dimensional
13(6)
1.7 But there's more
19(6)
1.8 Classification of partial differential equations
25(1)
1.9 Comments
26(1)
1.10 Exercises
27(2)
2 Classification and characteristics
29(20)
2.1 Characteristics of initial value problems on R
30(9)
2.2 Equations of second order
39(4)
2.3 Nonlinear equations of second order
43(1)
2.4 Equations of higher order and systems
44(1)
2.5 Exercises
45(4)
3 Elementary methods
49(66)
3.1 The one-dimensional wave equation
50(5)
3.2 Fourier series
55(8)
3.3 Laplace's equation
63(11)
3.4 The heat equation
74(16)
3.5 The Black-Scholes equation
90(6)
3.6 Integral transforms
96(13)
3.7 Outlook
109(1)
3.8 Exercises
110(5)
4 Hilbert spaces
115(40)
4.1 Inner product spaces
116(4)
4.2 Orthonormal bases
120(3)
4.3 Completeness
123(2)
4.4 Orthogonal projections
125(3)
4.5 Linear and bilinear forms
128(7)
4.6 Weak convergence
135(3)
4.7 Continuous and compact operators
138(1)
4.8 The spectral theorem
139(11)
4.9 Comments on
Chapter 4
150(1)
4.10 Exercises
151(4)
5 Sobolev spaces and boundary value problems in dimension one
155(26)
5.1 Sobolev spaces in one variable
156(8)
5.2 Boundary value problems on the interval
164(12)
5.3* Comments on
Chapter 5
176(1)
5.4 Exercises
176(5)
6 Hilbert space methods for elliptic equations
181(60)
6.1 Mollifiers
182(7)
6.2 Sobolev spaces on ω Rd
189(7)
6.3 The space H01 (ω)
196(4)
6.4 Lattice operations on H1(ω)
200(4)
6.5 The Poisson equation with Dirichlet boundary conditions
204(3)
6.6 Soholey spaces and Fourier transforms
207(6)
6.7 Local regularity
213(6)
6.8 Inhomogeneous Dirichlet boundary conditions
219(3)
6.9 The Dirichlet problem
222(9)
6.10 Elliptic equations with Dirichlet boundary conditions
231(2)
6.11 H2-regularity
233(3)
6.12 Comments on
Chapter 6
236(1)
6.13 Exercises
237(4)
7 Neumann and Robin boundary conditions
241(28)
7.1 Gauss's theorem
242(5)
7.2 Proof of Gauss's theorem
247(7)
7.3 The extension property
254(4)
7.4 The Poisson equation with Neumann boundary conditions
258(4)
7.5 The trace theorem and Robin boundary conditions
262(3)
7.6 Comments on
Chapter 7
265(1)
7.7 Exercises
266(3)
8 Spectral decomposition and evolution equations
269(44)
8.1 A vector-valued initial value problem
270(4)
8.2 The heat equation: Dirichlet boundary conditions
274(6)
8.3 The heat equation: Robin boundary conditions
280(3)
8.4 The wave equation
283(12)
8.5 Inhomogeneous parabolic equations
295(9)
8.6* Space/time variational formulations
304(4)
8.7* Comments on
Chapter 8
308(1)
8.8 Exercises
308(5)
9 Numerical methods
313(100)
9.1 Finite differences for elliptic problems
315(15)
9.2 Finite elements for elliptic problems
330(25)
9.3* Extensions and generalizations
355(5)
9.4 Parabolic problems
360(19)
9.5 The wave equation
379(27)
9.6* Comments on
Chapter 9
406(2)
9.7 Exercises
408(5)
10 Maple®, or why computers can sometimes help
413(10)
10.1 Maple®
414(7)
10.2 Exercises
421(2)
Appendix
423(12)
A.1 Banach spaces and linear operators
423(2)
A.2 The space C(K)
425(1)
A.3 Integration
426(2)
A.4 More details on the Black-Scholes equation
428(7)
References 435(4)
Index of names 439(4)
Index of symbols 443(2)
Index 445
Wolfgang Arendt is Senior Professor of Analysis at Ulm University. His research areas are functional analysis and partial differential equations.





Karsten Urban is Professor of Numerical Mathematics at Ulm University. His research interests include numerical methods for partial differential equations, especially with concrete applications in science and technology.