Atnaujinkite slapukų nuostatas

El. knyga: Pattern Recognition: 45th DAGM German Conference, DAGM GCPR 2023, Heidelberg, Germany, September 19-22, 2023, Proceedings

Edited by , Edited by
  • Formatas: EPUB+DRM
  • Serija: Lecture Notes in Computer Science 14264
  • Išleidimo metai: 07-Mar-2024
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783031546051
  • Formatas: EPUB+DRM
  • Serija: Lecture Notes in Computer Science 14264
  • Išleidimo metai: 07-Mar-2024
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783031546051

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book constitutes the proceedings of the 45th Annual Conference of the German Association for Pattern Recognition, DAGM-GCPR 2023, which took place in Heidelberg, Germany, during September 19-22, 2023. 
The 40 full papers included in these proceedings were carefully reviewed and selected from 76 submissions. They were organized in topical sections as follows: Segmentation and action recognition; 3D reconstruction and neural rendering; Photogrammetry and remote sensing; Pattern recognition in the life sciences; Interpretable machine learning; Weak supervision and online learning; Robust models.
Segmentation and action recognition.- Score-Based Generative Models for
Medical Image Segmentation using Signed Distance Functions.- A Trimodal
Dataset: RGB, Thermal, and Depth for Human Segmentation and Temporal Action
Detection.- Airborne-Shadow: Towards Fine-Grained Shadow Detection in Aerial
Imagery.- UGainS: Uncertainty Guided Anomaly Instance Segmentation.- Local
Spherical Harmonics Improve Skeleton-Based Hand Action Recognition.- 3D
reconstruction and neural rendering.- LMD: Light-weight Prediction Quality
Estimation for Object Detection in Lidar Point Clouds.- A Network Analysis
for Correspondence Learning via Linearly-Embedded Functions.- HiFiHR:
Enhancing 3D Hand Reconstruction from a Single Image via High-Fidelity
Texture.- Point2Vec for Self-Supervised Representation Learning on Point
Clouds.- FullFormer: Generating Shapes Inside Shapes.- GenLayNeRF:
Generalizable Layered Representations with 3D ModelAlignment for Human View
Synthesis.- RC-BEVFusion: A Plug-In Module for Radar-Camera Bird's Eye View
Feature Fusion.- Parallax-aware Image Stitching based on Homographic
Decomposition.- Photogrammetry and remote sensing.- DustNet: Attention to
Dust.- Leveraging Bioclimatic Context for Supervised and Self-Supervised Land
Cover Classification.- Automatic Reverse Engineering: Creating computer-aided
design (CAD) models from multi-view images.- Characterization of
out-of-distribution samples from uncertainty maps using supervised machine
learning.- Underwater multiview stereo using axial camera models.- Pattern
recognition in the life sciences.- 3D Retinal Vessel Segmentation in OCTA
Volumes: Annotated Dataset MORE3D and Hybrid U-Net with Flattening
Transformation.- M(otion)-mode Based Prediction of Ejection Fraction using
Echocardiograms.- Improving Data Efficiency for Plant Cover Prediction with
Label Interpolation and Monte-Carlo Cropping.- Learning Channel Importance
for High Content Imaging with Interpretable Deep Input Channel
Mixing.- Self-Supervised Learning in Histopathology: New Perspectives for
Prostate Cancer Grading.- Interpretable machine learning.- DeViL: Decoding
Vision features into Language.- Zero-shot Translation of Attention Patterns
in VQA Models to Natural Language.- Beyond Debiasing: Actively Steering
Feature Selection via Loss Regularization.- Simplified Concrete Dropout -
Improving the Generation of Attribution Masks for Fine-grained
Classification.- Weak supervision and online learning.- Best Practices in
Active Learning for Semantic Segmentation.- COOLer: Class-Incremental
Learning for Appearance-Based Multiple Object Tracking.- Label Smarter, Not
Harder: CleverLabel for Faster Annotation of Ambiguous Image Classification
with Higher Quality.- Speeding Up Online Self-Supervised Learning by
Exploiting Its Limitations.- Text-to-feature diffusion for audio-visual
few-shot learning.- Correlation Clustering of Bird Sounds.- MargCTGAN: A
``Marginally'' Better CTGAN for the Low Sample Regime.- Robust
models.- Detecting Model Misspecification in Amortized Bayesian Inference
with Neural Networks Adversarial Perturbations Straight on JPEG
Coefficients.- Certified Robust Models with Slack Control and Large Lipschitz
Constants.- Multiclass Alignment of Confidence and Certainty for Network
Calibration.- Drawing the Same Bounding Box Twice? Coping Noisy Annotations
in Object Detection with Repeated Labels.- An Evaluation of Zero-Cost Proxies
- from Neural Architecture Performance Prediction to Model Robustness.