Atnaujinkite slapukų nuostatas

El. knyga: Pattern Recognition and Computer Vision: 4th Chinese Conference, PRCV 2021, Beijing, China, October 29 - November 1, 2021, Proceedings, Part III

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

The 4-volume set LNCS 13019, 13020, 13021 and 13022 constitutes the refereed proceedings of the 4th Chinese Conference on Pattern Recognition and Computer Vision, PRCV 2021, held in Beijing, China, in October-November 2021.





The 201 full papers presented were carefully reviewed and selected from 513 submissions. The papers have been organized in the following topical sections: Object Detection, Tracking and Recognition; Computer Vision, Theories and Applications, Multimedia Processing and Analysis; Low-level Vision and Image Processing; Biomedical Image Processing and Analysis; Machine Learning, Neural Network and Deep Learning, and New Advances in Visual Perception and Understanding.
Low-level Vision and Image Processing.- SaliencyBERT: Recurrent
Attention Network for Target-oriented Multimodal Sentiment Classification.-
Latency-Constrained Spatial-Temporal Aggregated Architecture Search for Video
Deraining.- Semantic-Driven Context Aggregation Network for Underwater Image
Enhancement.- A Multi-resolution Medical Image Fusion Network with Iterative
Back-Projection.- Multi-Level Discriminator and Wavelet Loss for Image
Inpainting with Large Missing Area.- 3D^2Unet: 3D Deformable Unet for
Low-Light Video Enhancement.- Single Image Specular Highlight Removal on
Natural Scenes.- Document image binarization using visibility detection and
point cloud segmentation.- LF-MAGNet: Learning Mutual Attention Guidance of
Sub-Aperture Images for Light Field Image Super-Resolution.- Infrared Small
Target Detection Based on Weighted Variation Coefficient Local Contrast
Measure.- Scale-aware Distillation Network for Lightweight Image
Super-Resolution.- Deep Multi-Illumination Fusion for Low-Light Image
Enhancement.- Relational Attention with Textual Enhanced Transformer For
Image Captioning.- Non-local Network Routing for Perceptual Image
Super-Resolution.- Multi-Focus Image Fusion with Cooperative Image Multiscale
Decomposition.- An Enhanced Multi-Frequency Learned Image Compression
Method.- Noise Map Guided Inpainting Network for Low-Light Image
Enhancement.- FIE-GAN: Illumination Enhancement Network for Face
Recognition.- Illumination-Aware Image Quality Assessment for Enhanced
Low-light Image.- Smooth Coupled Tucker Decomposition for Hyperspectral Image
Super-resolution.- Self-Supervised Video Super-Resolution by Spatial
Constraint and Temporal Fusion.- ODE-Inspired Image Denoiser: An End-to-End
Dynamical Denoising Network.- Image Outpainting with Depth Assistance.-
Light-weight Multi-channel Aggregation Network for Image Super-resolution.-
Slow Video Detection Based on Spatial-temporal Feature Representation.-
Biomedical Image Processing and Analysis.- The NL-SC Net for Skin Lesion
Segmentation.- Two-Stage COVID-19 Lung Segmentation from CT Images by
Integrating Rib Outlining and Contour Refinement.- Deep Semantic Edge for
Cell Counting and Localization in Time-Lapse Microscopy Images.- A Guided
Attention 4D Convolutional Neural Network for Modeling Spatio-Temporal
Patterns of Functional Brain Networks.- Tiny-FASNet: A Tiny Face
Anti-spoofing Method Based on Tiny Module.- Attention-based Node-Edge Graph
Convolutional Networks for Identification of Autism Spectrum Disorder Using
Multi-Modal MRI Data.- Segmentation of Intracellular Structures in
Fluorescence Microscopy Images by Fusing Low-Level Feature.- Interactive
Attention Sampling Network for Clinical Skin Disease Image Classification.-
Cross-Model Attention Method for Medical Image Enhancement.- Multi-modal Face
Anti-Spoofing based on a Single Image.- Non-Significant information
Enhancement based Attention Network for Face Anti-Spoofing.- Early Diagnosis
of Alzheimer's Disease Using 3D Residual Attention Network Based on
Hippocampal Multi-indices Feature Fusion.- HPCReg-Net: Unsupervised U-Net
Integrating Dilated Convolution and Residual Attention for Hippocampus
Registration.- Characterization Multimodal Connectivity of Brain Network by
Hypergraph GAN for Alzheimers Disease Analysis.- Multimodal Representations
Learning and Adversarial Hypergraph Fusion for Early Alzheimers Disease
Prediction.- Model-based gait recognition using graph network with pose
sequences.- Multi-directional Attention Network for Segmentation of Pediatric
Echocardiographic.- Deep-based Super-angular Resolution for Diffusion
Imaging.- A Multiple Scale Encoders Network for Stroke Lesion Segmentation.-
Nodule Synthesis and Selection for Augmenting Chest X-ray Nodule Detection.-
Dual-Task Mutual Learning for Semi-Supervised Medical Image Segmentation.-
DPACN:Dual Prior-guided Astrous Convolutional Network for Adhesive Pulmonary
Nodules Segmentation on CT Sequence.- Face Anti-Spoofing Based on Cooperative
Pose Analysis.- A Dark and Bright Channel Prior Guided Deep Network for
Retinal Image Quality Assessment.- Continual Representation Learning via
Auto-Weighted Latent Embeddings on Person ReID.- Intracranial Hematoma
Classification Based on the Pyramid Hierarchical Bilinear Pooling.-
Multi-Branch Multi-Task 3D-CNN for Alzheimers Disease Detection.