Atnaujinkite slapukų nuostatas

El. knyga: Pattern Recognition and Computer Vision: 4th Chinese Conference, PRCV 2021, Beijing, China, October 29 - November 1, 2021, Proceedings, Part IV

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formatas: EPUB+DRM
  • Serija: Lecture Notes in Computer Science 13022
  • Išleidimo metai: 22-Oct-2021
  • Leidėjas: Springer Nature Switzerland AG
  • Kalba: eng
  • ISBN-13: 9783030880132
  • Formatas: EPUB+DRM
  • Serija: Lecture Notes in Computer Science 13022
  • Išleidimo metai: 22-Oct-2021
  • Leidėjas: Springer Nature Switzerland AG
  • Kalba: eng
  • ISBN-13: 9783030880132

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

The 4-volume set LNCS 13019, 13020, 13021 and 13022 constitutes the refereed proceedings of the 4th Chinese Conference on Pattern Recognition and Computer Vision, PRCV 2021, held in Beijing, China, in October-November 2021.





The 201 full papers presented were carefully reviewed and selected from 513 submissions. The papers have been organized in the following topical sections: Object Detection, Tracking and Recognition; Computer Vision, Theories and Applications, Multimedia Processing and Analysis; Low-level Vision and Image Processing; Biomedical Image Processing and Analysis; Machine Learning, Neural Network and Deep Learning, and New Advances in Visual Perception and Understanding.
Machine Learning, Neural Network and Deep Learning.- Edge-Wise One-Level
Global Pruning on NAS generated networks.- Convolution Tells Where to Look.-
Robust Single-step Adversarial Training with Regularizer.- Texture-guided
U-Net for OCT-to-OCTA Generation.- Learning Key Actors and Their Interactions
for Group Activity Recognition.- Attributed Non-negative Matrix
Multi-Factorization for Data Representation.- Improved Categorical
Cross-Entropy Loss for Training Deep Neural Networks with Noisy Labels.- A
Residual Correction Approach for Semi-supervised Semantic Segmentation.-
Hypergraph Convolutional Network with Hybrid Higher-order Neighbors.-
Text-Aware Single Image Specular Highlight Removal.- Minimizing Wasserstein-1
Distance by Quantile Regression for GANs Model.- A Competition of Shape and
Texture Bias by Multi-View Image Representation.- Learning Indistinguishable
and Transferable Adversarial Examples.- Efficient Object Detection and
Classification of Ground Objects fromThermal Infrared Remote Sensing Image
Based on Deep Learning.- MEMA-NAS: Memory-Efficient Multi-Agent Neural
Architecture Search.- Adversarial Decoupling for Weakly Supervised Semantic
Segmentation.- Towards End-to-End Embroidery Style Generation: A Paired
Dataset and Benchmark.- Efficient and real-time particle detection via
encoder-decoder network.- Flexible Projection Search using Optimal
Re-weighted Adjacency for Unsupervised Manifold Learning .- Fabric Defect
Detection via Multi-scale Feature Fusion-based Saliency.- Improving
Adversarial Robustness of Detectors via Objectness Regularization.- IPE
Transformer for Depth Completion with Input-Aware Positional Embeddings.-
Enhanced Multi-view Matrix Factorization with Shared Representation.-
Multi-level Residual Attention Network for Speckle Suppression.- Suppressing
Style-Sensitive Features via Randomly Erasing for Domain Generalizable
Semantic Segmentation.- MAGAN: Multi-Attention Generative Adversarial
Networks for Text-to-Image Generation.- Dual Attention Based Network with
Hierarchical ConvLSTM for Video Object Segmentation.- Distance-based Class
Activation Map for Metric Learning.- Reading Pointer Meter through One Stage
End-to-End Deep Regression.- Deep Architecture Compression with Automatic
Clustering of Similar Neurons.- Attention Guided Spatio-temporal Artifacts
Extraction  for Deepfake Detection.- Learn the Approximation Distribution of
Sparse Coding with Mixture Sparsity Network.- Anti-occluded person
re-identification via pose restoration and dual channel feature distance
measurement.- Dynamic Runtime Feature Map Pruning.- Special Session: New
Advances in Visual Perception and Understanding.- Multi-Branch Graph Network
for Learning Human-Object Interaction.- FDEA: Face Dataset with Ethnicity
Attribute.- TMD-FS: Improving Few-Shot Object Detection with Transformer
Multi-modal Directing.- Feature Matching Network for Weakly-Supervised
Temporal Action Localization.- LiDAR-based symmetrical guidance for 3D Object
Detection.- Few-shot Segmentation via Complementary Prototype Learning and
Cascaded Refinement.- Couple Double-Stage FPNs with Single Pipe-line for
solar speckle images deblurring.- Multi-scale Image Partitioning and Saliency
Detection for Single Image Blind Deblurring.- CETransformer: Casual Effect
Estimation via Transformer Based Representation Learning.- An Efficient Polyp
Detection Framework with Suspicious Targets Assisted Training.- Invertible
Image Compressive Sensing.- Gradient-free Neural Network Training Based on
Deep Dictionary Learning with the Log Regularizer.