Atnaujinkite slapukų nuostatas

El. knyga: Pattern Recognition and Computer Vision: 5th Chinese Conference, PRCV 2022, Shenzhen, China, November 4-7, 2022, Proceedings, Part II

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formatas: EPUB+DRM
  • Serija: Lecture Notes in Computer Science 13535
  • Išleidimo metai: 27-Oct-2022
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783031189104
  • Formatas: EPUB+DRM
  • Serija: Lecture Notes in Computer Science 13535
  • Išleidimo metai: 27-Oct-2022
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783031189104

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

The 4-volume set LNCS 13534, 13535, 13536 and 13537 constitutes the refereed proceedings of the 5th Chinese Conference on Pattern Recognition and Computer Vision, PRCV 2022, held in Shenzhen, China, in November 2022.

The 233 full papers presented were carefully reviewed and selected from 564 submissions. The papers have been organized in the following topical sections: Theories and Feature Extraction; Machine learning, Multimedia and Multimodal; Optimization and Neural Network and Deep Learning; Biomedical Image Processing and Analysis; Pattern Classification and Clustering; 3D Computer Vision and Reconstruction, Robots and Autonomous Driving; Recognition, Remote Sensing; Vision Analysis and Understanding; Image Processing and Low-level Vision; Object Detection, Segmentation and Tracking.
Biomedical Image Processing and Analysis.- ED-AnoNet: Elastic
Distortion-Based Unsupervised Network for OCT Image Anomaly
Detection.- BiDFNet: Bi-decoder and Feedback Network for Automatic Polyp
Segmentation with Vision Transformers.- FundusGAN: A One-Stage Single Input
GAN for Fundus Synthesis.- DIT-NET: Joint Deformable Network and Intra-class
Transfer GAN for cross-domain 3D Neonatal Brain MRI
segmentation.- Classification of sMRI Images for Alzheimer's Disease by Using
Neural Networks.- Semi-Supervised Distillation Learning Based on Swin
Transformer for MRI Reconstruction.- Multi-Scale Multi-Target Domain
Adaptation for Angle Closure Classification.- Automatic glottis segmentation
method based on lightweight U-net.- Decouple U-Net: A Method for the
Segmentation and Counting of Macrophages in Whole Slide Imaging.- A
Zero-training Method for RSVP-based Brain Computer Interface.- An improved
tensor network for image classification in histopathology.- DeepEnReg: Joint
Enhancement and Ane Registration for Low-contrast Medical
Images.- Fluorescence Microscopy Images Segmentation based on Prototypical
Networks with a few Annotations.- SuperVessel: Segmenting High-resolution
Vessel from Low-resolution Retinal Image.- Cascade Multiscale Swin-Conv
Network for Fast MRI Reconstruction.- DEST: Deep Enhanced Swin Transformer
toward Better Scoring for NAFLD.- CTCNet: A Bi-directional Cascaded
Segmentation Network Combining Transformers with CNNs for Skin Lesions.- MR
Image Denoising Based On Improved Multipath Matching
Pursuit Algorithm.- Statistical characteristics of 3-D PET imaging: a
comparison between conventional and total-body PET scanners.- Unsupervised
medical image registration based on multi-scale cascade network.- A Novel
Local-global Spatial Attention Network for Cortical Cataract Classification
in AS-OCT.- PRGAN:A Progressive Refined GAN for Lesion Localization and
Segmentation on High-Resolution Retinal fundus Photography.- Multiscale
Autoencoder with Structural-Functional Attention Network for Alzheimer's
Disease Prediction.- Robust Liver Segmentation Using Boundary Preserving Dual
Attention Network.- msFormer: Adaptive Multi-Modality 3D Transformer for
Medical Image Segmentation.- Semi-supervised Medical Image Segmentation with
Semantic Distance Distribution Consistency Learning.- MultiGAN: multi-domain
image translation from OCT to OCTA_ TransPND: A Transformer based Pulmonary
Nodule Diagnosis Method on CT Image.- Adversarial Learning Based Structural
Brain-network Generative Model for Analyzing Mild Cognitive Impairment.- A
2.5D Coarse-to-fine Framework for 3D Cardiac CT View Planning.- Weakly
Supervised Semantic Segmentation of Echocardiography Videosvia Multi-level
Features Selection.- DPformer: Dual-path transformers forgeometric and
appearancefeatures reasoning in diabetic retinopathy grading.- Deep
Supervoxel Mapping Learning for Dense Correspondence of Cone-Beam Computed
Tomography.- Manifold-Driven and Feature Replay Lifelong Representation
Learning on Person ReID.- Multi-source information-shared domain adaptation
for EEG emotion recognition.- Spatial-Channel Mixed Attention based Network
for Remote Heart Rate Estimation.- Weighted Graph Based Feature
Representation for Finger-Vein Recognition.- Self-Supervised Face
Anti-Spoofng via Anti-Contrastive Learning.- Counterfactual Image Enhancement
for Explanation of Face Swap Deepfakes.- Improving Pre-trained Masked
Autoencoder with Locality Enhancement for Person Re-identification.- MINIPI :
a MultI-scale Neural network based impulse radio ultra-wideband radar Indoor
Personnel Identification method.- PSU-Net: Paired Spatial U-Net for hand
segmentation with complex  backgrounds.- Pattern Classification and
Clustering.- Human Knowledge-Guided and Task-Augmented Deep Learning
for Glioma Grading.- Learning to Cluster Faces with Mixed Face
Quality.- Capturing Prior Knowledge in Soft Labels for Classification
with Limited or Imbalanced Data.- Coupled Learning for Kernel Representation
and Graph Tensor in Multi-view Subspace Clustering.- Combating Noisy Labels
via Contrastive Learning with Challenging Pairs.- Semantic Center Guided
Windows Attention Fusion Framework for Food Recognition.- Adversarial
Bidirectional Feature Generation for Generalized Zero-Shot Learning under
Unreliable Semantics.- Exploiting Robust Memory Features for Unsupervised
Reidentification.- TIR: A Two-stage Insect Recognition method for
convolutional neural network.- Discerning Coteaching: A Deep Framework for
Automatic Identification of Noise Labels.- VDSSA: Ventral & Dorsal Sequential
Self-attention AutoEncoder for Cognitive-Consistency Disentanglement.-
Bayesian Neural Networks with Covariate Shift Correction for Classification
in -ray Astrophysics.