Atnaujinkite slapukų nuostatas

El. knyga: Pattern Recognition and Computer Vision: 5th Chinese Conference, PRCV 2022, Shenzhen, China, November 4-7, 2022, 2022, Proceedings, Part IV

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formatas: PDF+DRM
  • Serija: Lecture Notes in Computer Science 13537
  • Išleidimo metai: 27-Oct-2022
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783031189166
  • Formatas: PDF+DRM
  • Serija: Lecture Notes in Computer Science 13537
  • Išleidimo metai: 27-Oct-2022
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783031189166

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

The 4-volume set LNCS 13534, 13535, 13536 and 13537 constitutes the refereed proceedings of the 5th Chinese Conference on Pattern Recognition and Computer Vision, PRCV 2022, held in Shenzhen, China, in November 2022.

The 233 full papers presented were carefully reviewed and selected from 564 submissions. The papers have been organized in the following topical sections: Theories and Feature Extraction; Machine learning, Multimedia and Multimodal; Optimization and Neural Network and Deep Learning; Biomedical Image Processing and Analysis; Pattern Classification and Clustering; 3D Computer Vision and Reconstruction, Robots and Autonomous Driving; Recognition, Remote Sensing; Vision Analysis and Understanding; Image Processing and Low-level Vision; Object Detection, Segmentation and Tracking.
Image Processing and Low-level Vision.- Video Deraining via Temporal
Discrepancy Learning.- Multi-priors Guided Dehazing Network Based on
Knowledge Distillation.- DLMP-Net: a dynamic yet lightweight multi-pyramid
network for crowd density estimation.- CHENet: Image to Image Chinese
Handwriting Eraser.- Identidication method for rice pests with small sample
size problem combining deep learning and metric learning.- Boundary-Aware
Polyp Segmentation Network.- SUDANet:A Siamese UNet with Dense Attention
Mechanism for Remote Sensing Image Change Detection.- A Local-Global
Self-attention Interaction Network for RGB-D Cross-modal Person
Re-identification.- A RAW Burst Super-Resolution Method with Enhanced
Denoising.- Unpaired and Self-supervised Optical Coherence Tomography
Angiography Super-resolution.- Multi-Feature Fusion Network for Single Image
Dehazing.- LAGAN: Landmark Aided Text to Face Sketch Generation.- DMF-CL:
Dense Multi-scale Feature Contrastive Learning for Semantic segmentation of
Remote-sensing images.- Image derain method for generative adversarial
network based on wavelet high frequency feature fusion.- GPU-Accelerated
Infrared Patch-Image Model for Small Target Detection.- Hyperspectral and
Multispectral Image Fusion Based on Unsupervised Feature Mixing and
Reconstruction Network.- Information Adversarial Disentanglement for Face
Swapping.- A Dense Prediction ViT Network for Single Image Bokeh
Rendering.- Multi-scale Coarse-to-fine Network for Demoiring.- Learning
Contextual Embedding Deep Networks for Accurate and Efficient Image
Deraining.- A Stage-Mutual-Ane Network for Single Remote Sensing
Image Super-Resolution.- Style-based Attentive Network for Real-World Face
Hallucination.- Cascade Scale-aware Distillation Network for Lightweight
RemoteSensing Image Super-Resolution.- Few-Shot Segmentation via Rich
Prototype Generation and RecurrentPrediction Enhancement.- Object Detection,
Segmentation and Tracking.- TAFDet: A Task Awareness Focal Detector for Ship
Detection in SAR Images.- MSDNet:Multi-scale Dense Networks for Salient
Object Detection.- WaveSNet: Wavelet Integrated Deep Networks for Image
Segmentation.- Infrared Object Detection Algorithm Based on Spatial
Feature Enhancement.- Object Detection Based on Embedding Internal and
External Knowledge.- ComLoss: A Novel Loss towards More Compact Predictions
for Pedestrian Detection.- Remote sensing image detection based on attention
mechanism and YOLOv5.- Detection of Pin Defects in Transmission Lines Based
on Dynamic Receptive Field.- Identification of bird s nest hazard level of
transmission line based on improved yolov5 and location constraints.- Image
Magnification Network for Vessel Segmentation in OCTA Images.- CFA-Net:
Cross-level Feature Fusion and Aggregation Network for Salient Object
Detection.- Disentangled Feature Learning for Semi-supervised Person
Re-identification.- Detection Beyond What and Where: A Benchmark for
Detecting Occlusion State.- Weakly Supervised Object Localization with
Noisy-Label Learning.- Enhanced Spatial Awareness For Deep Interactive Image
Segmentation.- Anchor-Free Location Refinement Network for Small License
Plate Detection.- Multi-View LiDAR Guided Monocular 3D Object
Detection.- Dual Attention-guided Network for Anchor-free Apple
Instance Segmentation in Complex Environments.- Attention-Aware Feature
Distillation for Object Detection in Decompressed Images.- Cross-Stage
Class-Specific Attention for Image Semantic Segmentation.- Defect Detection
for High Voltage Transmission Lines Based on Deep Learning.- ORION:
Orientation-Sensitive Object Detection.- An Infrared MovingSmall Object
Detection Method Based on Trajectory Growth.- Two-stage Object Tracking Based
on Similarity Measurement for FusedFeatures of Positive and Negative
Samples.- PolyTracker: Progressive Contour Regression for Multiple
ObjectTracking and Segmentation.- Dual-branch Memory Network for Visual
Object Tracking.- Instance-wise Contrastive Learning for Multi-Object
Tracking.- Information Lossless Multi-Modal Image Generation for RGB-T
Tracking.- JFT: A Robust Visual Tracker Based on Jitter Factor and
Global Registration.- Caged Monkey Dataset: A New Benchmark for Caged Monkey
Pose Estimation.- WTB-LLL: A Watercraft Tracking Benchmark Derived
by Low-light-level Camera.- Dualray: Dual-view X-ray Security Inspection
Benchmark and FusionDetection Framework.