Atnaujinkite slapukų nuostatas

El. knyga: PEM Fuel Cell Electrocatalysts and Catalyst Layers: Fundamentals and Applications

Edited by
  • Formatas: PDF+DRM
  • Išleidimo metai: 26-Aug-2008
  • Leidėjas: Springer London Ltd
  • Kalba: eng
  • ISBN-13: 9781848009363
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Išleidimo metai: 26-Aug-2008
  • Leidėjas: Springer London Ltd
  • Kalba: eng
  • ISBN-13: 9781848009363
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Proton exchange membrane (PEM) fuel cells are promising clean energy converting devices with high efficiency and low to zero emissions. Such power sources can be used in transportation, stationary, portable and micro power applications. The key components of these fuel cells are catalysts and catalyst layers. “PEM Fuel Cell Electrocatalysts and Catalyst Layers” provides a comprehensive, in-depth survey of the field, presented by internationally renowned fuel cell scientists. The opening chapters introduce the fundamentals of electrochemical theory and fuel cell catalysis. Later chapters investigate the synthesis, characterization, and activity validation of PEM fuel cell catalysts. Further chapters describe in detail the integration of the electrocatalyst/catalyst layers into the fuel cell, and their performance validation. Researchers and engineers in the fuel cell industry will find this book a valuable resource, as will students of electrochemical engineering and catalyst synthesis.



Proton exchange membrane (PEM) fuel cells promise clean energy converting devices with high efficiency and low to zero emissions. This book provides a comprehensive, in-depth survey of the field, presented by internationally renowned fuel cell scientists.

1 PEM Fuel Cell Fundamentals 1
Xiao-Zi Yuan and Haijiang Wang
1.1 Overview
1
1.1.1 Introduction
1
1.1.2 Main Cell Components and Materials
11
1.1.3 PEM Fuel Cell Operation
17
1.1.4 PEM Fuel Cell Applications
25
1.2 Thermodynamics
31
1.2.1 Basic Reactions
31
1.2.2 Heat of Reaction
41
1.2.3 Effect of Operation Conditions on Reversible Fuel Cell Potential
42
1.2.4 Open Circuit Voltage
44
1.2.5 Fuel Cell Efficiency
48
1.2.6 Summary
50
1.3 Reaction Kinetics
53
1.3.1 Electrode Reactions
53
1.3.2 Reaction Rate
53
1.3.3 Mass Transfer
60
1.3.4 Multiple Kinetics
65
1.3.5 Polarization Curve and Voltage Losses
67
1.3.6 Measures to Improve Cell Performance
78
References
79
2 Electrocatalytic Oxygen Reduction Reaction 89
Chaojie Song and Jiujun Zhang
2.1 Introduction
89
2.1.1 Electrochemical O2 Reduction Reactions
89
2.1.2 Kinetics of the O2 Reduction Reaction
90
2.1.3 Techniques Used in Electrocatalytic O2 Reduction Reactions
93
2.2 Oxygen Reduction on Graphite and Carbon
101
2.2.1 Oxygen Reduction Reaction Mechanisms
102
2.2.2 Kinetics of the ORR on Carbon Materials
107
2.2.3 Catalytic Sites on Carbon Materials
108
2.3 Oxygen Reduction Catalyzed by Quinone and Derivatives
109
2.3.1 AO Process for O2 Reduction to Produce H2O2
109
2.3.2 ORR Mechanism Electrochemically Catalyzed by Quinone
110
2.4 Oxygen Reduction on Metal Catalysts
110
2.4.1 ORR Mechanism on Pt
110
2.4.2 Mixed Pt Surface and Rest Potential on Pt
112
2.4.3 ORR Kinetics on Pt
113
2.4.4 ORR on Pt Alloys
114
2.4.5 Catalytic ORR on Other Metals
116
2.5 ORR on Macrocyclic Transition Metal Complexes
117
2.5.1 ORR Mechanisms Catalyzed by Transition Metal Macrocyclic Complexes
117
2.5.2 Transition Metal Macrocycles as ORR Catalysts
117
2.5.3 ORR Kinetics Catalyzed by Transition Metal Macrocyclic Complexes
121
2.6 ORR Catalyzed by Other Catalysts
122
2.6.1 ORR Catalyzed by Transition Metal Chalcogenides
122
2.6.2 ORR Catalyzed by Transition Metal Carbide
124
2.7 Superoxide Ion
125
2.7.1 Production of Superoxide Ion by Other Methods
125
2.7.2 Properties of Superoxide Ion
126
2.7.3 Stability of Superoxide Ion
127
2.7.4 Superoxide Production by Electrocatalysis
127
2.8 Conclusions
129
References
129
3 Electrocatalytic H2 Oxidation Reaction 135
Hui Li, Kunchan Lee and Jiujun Zhang
3.1 Introduction
135
3.2 Electrooxidation of Hydrogen
136
3.2.1 Mechanism of the Hydrogen Oxidation Reaction
136
3.2.2 Thermodynamic Considerations for the Hydrogen Electrode Reaction
138
3.2.3 Kinetics of the Hydrogen Oxidation Reaction
138
3.2.4 Hydrogen Adsorption Behavior
143
3.2.5 Kinetic Parameters of the Hydrogen Oxidation Reaction
147
3.3 Electrocatalysis of Hydrogen Oxidation
149
3.3.1 Platinum and Platinum Group Metals (Pt, Ru, Pd, Ir, Os, and Rh)
149
3.3.2 Carbides
156
3.3.3 Raney Nickel
156
3.3.4 Typical Example Analysis – PtRu Alloy as a CO-tolerant Catalyst for the HOR
157
3.4 Conclusions
159
References
159
4 Electrocatalytic Oxidation of Methanol, Ethanol and Formic Acid 165
Elod Gyenge
4.1 Introduction
165
4.1.1 Historical Overview: 1960-1990
165
4.1.2 Objectives
171
4.2 Reaction Pathways, Catalyst Selection and Performance: Example Analysis
172
4.2.1 Methanol Electrooxidation
172
4.2.2 Formic Acid Electrooxidation
201
4.2.3 Ethanol Electrooxidation
219
4.2.4 Non-precious Metal Catalysts for Methanol, Formic Acid, and Ethanol Oxidation
224
4.3 Advances in Anode Catalyst Layer Engineering: Example Analysis
230
4.3.1 Engineering of the Catalyst Surface and Morphology
230
4.3.2 The Catalytic Interface: Catalyst/Support/Ionomer Interaction
236
4.4 Conclusions
269
References
270
5 Application of First Principles Methods in the Study of Fuel Cell Air-Cathode Electrocatalysis 289
Zheng Shi
5.1 Introduction
289
5.2 Background
290
5.2.1 Theoretical Methods
290
5.2.2 Oxygen Reduction Reaction
291
5.3 Surface Adsorption
293
5.3.1 Computational Methods
294
5.3.2 Adsorption on Transition Metals
295
5.3.3 Adsorption on Bimetallic Alloys
299
5.4 Activation Energy
306
5.4.1 Computational Method
306
5.4.2 Example Calculations
307
5.5 Thermodynamic Properties: Reversible Potential and Reaction Energy
311
5.5.1 Reversible Potential
311
5.5.2 Reaction Thermodynamics
313
5.6 Study of Non-noble Catalysts
316
5.7 Summary
324
References
324
6 Catalyst Contamination in PEM Fuel Cells 331
Hui Li, Chaojie Song, Jianlu Zhang and Jiujun Zhang
6.1 Introduction
331
6.2 Anode Catalyst Layer Contamination
331
6.2.1 Impacts of Carbon Dioxide
332
6.2.2 Impacts of Hydrogen Sulfide (H2S)
334
6.2.3 Impacts of Ammonium (NH3)
337
6.2.4 Modeling of the Contamination of the PEMFC Anode Catalyst
337
6.2.5 Mitigation of Anode Contamination
339
6.3 Cathode Catalyst Layer Contamination
339
6.3.1 SOx Contamination
340
6.3.2 NOx Contamination
343
6.3.3 NH3 and H2S Contamination
346
6.3.4 Volatile Organic Compounds (VOCs) Contamination
347
6.3.5 Ozone Contamination
348
6.3.6 The Contamination Effects of Multi-contaminants
348
6.3.7 Modeling of PEMFC Cathode Catalyst Contamination
349
6.4 Additive Effects of Anode and Cathode Contamination
349
6.5 Summary
350
References
351
7 PEM Fuel Cell Catalyst Layers and MEAs 355
Pei Kang Shen
7.1 Fundamentals of Catalyst Layers
355
7.1.1 Components and Structure
356
7.1.2 Functions and Reactions
356
7.1.3 Factors Affecting the Performance of CLs
359
7.1.4 Catalyst Layers for Liquid Fuel Cells
366
7.1.5 Catalyst Layers for Anion Exchange Membrane Fuel Cells
367
7.2 Principles of Membrane Electrode Assembly (MEA)
369
7.2.1 Classification of MEA Materials
370
7.2.2 Methods for MEA Fabrication
371
7.2.3 Technical Consideration
372
7.2.4 MEA for Anion Exchange Membrane Fuel Cells
373
7.3 Conclusions
374
References
374
8 Catalyst Layer Modeling: Structure, Properties and Performance 381
Michael H. Eikerling, Kourosh Malek and Qianpu Wang
8.1 Introduction
381
8.2 Understanding Structure and Operation of Catalyst Layers
383
8.2.1 Challenges for the Structural Design
383
8.2.2 Porous Electrode Theory: Historical Perspective
384
8.2.3 Misapprehensions and Controversial Issues
387
8.2.4 Effectiveness of Catalyst Utilization
388
8.2.5 Evaluating the Performance of CLs
391
8.3 State of the Art in Theory and Modeling: Multiple Scales
395
8.4 Structural Formation of Catalyst Layers and Effective Properties
398
8.4.1 Molecular Dynamics Simulations
398
8.4.2 Atomistic MD Simulations of CLs
400
8.4.3 Meso-scale Model of CL Microstructure Formation
403
8.4.4 Structure-related Effective Properties of CLs
407
8.5 Performance Modeling and Optimization Studies
412
8.5.1 General Framework of Performance Modeling
412
8.5.2 Transport and Reaction in Catalyst Layers
415
8.5.3 Spherical Agglomerates
418
8.5.4 Main Results of the Macrohomogeneous Approach
425
8.5.5 Water Management in CCLs
428
8.6 Comparison and Evaluation of Catalyst Layer Designs
433
8.6.1 Conventional Catalyst Layers
434
8.6.2 Ultra-thin Two-phase Catalyst Layers
434
8.7 Summary and Outlook
438
References
439
9 Catalyst Synthesis Techniques 447
Christina Bock, Helga Halvorsen and Barry MacDougall
9.1 Introduction
447
9.2 Catalysis Synthesis Methods
447
9.2.1 Low-temperature Chemical Precipitation
448
9.2.2 Colloidal
448
9.2.3 Sol-gel
449
9.2.4 Impregnation
450
9.2.5 Microemulsions
451
9.2.6 Electrochemical
453
9.2.7 Spray Pyrolysis
454
9.2.8 Vapor Deposition
455
9.2.9 High-energy Ball Milling
457
9.3 Particle Size and Shape Control
458
9.3.1 Mechanism for Size Control Using Colloidal Synthesis Methods
460
9.3.2 Size Control Using Electrochemical Methods
463
9.3.3 Assistance of Templates and Template Preparation
463
9.3.4 Shape Control
467
9.4 Bi-metallic Catalysts
468
9.4.1 Synthesis of Alloy versus Two-phase Catalysts
468
9.4.2 Sub-monolayer Deposition of Ad-metals
472
9.5 Non-noble Metal Catalyst Synthesis
474
9.5.1 Macrocyclic Complexes
474
9.5.2 Methanol Tolerance and the Economics of these Catalysts
476
9.5.3 Transition Metal Chalcogenides
477
9.5.4 Conclusions
478
References
479
10 Physical Characterization of Electrocatalysts 487
Shun Liao, Baitao Li and Yingwei Li
10.1 Introduction
487
10.2 Analysis of Composition and Phase of Catalyst
488
10.2.1 X-ray Diffraction (XRD) and Electron Diffraction (ED)
488
10.2.2 X-ray Fluorescence (XRF), X-ray Emission (XRE), and Proton-induced X-ray Emission (PIXE)
497
10.3 Measurement of Physical Surface Area and Electrochemical Active Surface Area
498
10.3.1 BET Method and Physical Surface Area
498
10.3.2 Electrochemical Hydrogen Adsorption/Desorption
499
10.3.3 Typical Examples Analysis
501
10.4 Morphology of Catalysts and Their Active Components
505
10.4.1 Scanning Electron Microscopy (SEM)
505
10.4.2 Transmission Electron Microscopy
506
10.4.3 Typical Examples
507
10.5 The Structure and Crystallography of Surface and Small Active Component Particles
512
10.5.1 Principles of Electron Spectroscopy for Chemical Analysis (ESCA)
512
10.5.2 X-ray Photoelectron Spectroscopy (XPS)
513
10.5.3 UV-induced Photoelectron Spectroscopy (UVPS)
519
10.5.4 Energy Dispersive Spectroscopy (EDS) and its Application
522
10.6 Analysis of the Stability of Catalysts by the Thermal Analysis Method
525
10.6.1 Principles
525
10.6.2 Application
526
10.6.3 Typical Examples of Analysis
527
10.7 Other Structural Techniques for Characterizing the Bulk and Surface of Electrocatalysts
532
10.7.1 FTIR and UV-VIS
532
10.7.2 TPD/TPR
534
10.8 Conclusion
536
References
536
11 Electrochemical Methods for Catalyst Activity Evaluation 547
Zhigang Qi
11.1 Electrochemical Cells
547
11.1.1 Introduction
547
11.1.2 Conventional 3-Electrode Cells
548
11.1.3 Half-cells
551
11.1.4 Single Cells
553
11.2 Brief Principles of Electrochemical Instrumentation
556
11.3 Cyclic Voltammetry
556
11.3.1 Basic Principles
556
11.3.2 Potential Step Experiment
558
11.3.3 Instrumentation: Potentiostat
559
11.3.4 Applications
560
11.4 Rotating Disk and Rotating Ring-disk Electrode Techniques
567
11.4.1 Theories and Principles
567
11.4.2 Instrumentation
570
11.4.3 Fuel Cell-related Applications
570
11.5 Electrochemical Impedance Spectroscopy
573
11.5.1 Theories and Principles
573
11.5.2 Instrumentation
578
11.5.3 Application in Fuel Cells
578
11.6 Current Interruption and Current Pulse Techniques
585
11.6.1 Principles and Instrumentation
585
11.6.2 Application in Fuel Cells
587
11.7 Steady-state I-V Polarization
588
11.7.1 Principles and Instrumentation
588
11.7.2 Fuel Cell Hardware
589
11.7.3 Fuel Cell Performance
590
11.8 Durability Evaluation
592
11.8.1 Introduction
592
11.8.2 Techniques
593
11.9 Summary
602
List of Symbols
602
References
604
12 Combinatorial Methods for PEM Fuel Cell Electrocatalysts 609
Hansan Liu and Jiujun Zhang
12.1 Introduction
609
12.1.1 Combinatory Material Chemistry
609
12.1.2 Electrocatalysis in PEM Fuel Cells
611
12.2 Combinatorial Methods for Fuel Cell Electrocatalysis
612
12.2.1 Catalyst Library Preparation
612
12.2.2 Catalyst Activity Down-selection
617
12.3 Combinatorial Discoveries of Fuel Cell Electrocatalysts
622
12.3.1 Low/Non-platinum Content Catalysts for PEM Fuel Cell Cathodes
623
12.3.2 CO-tolerant Catalysts for PEM Fuel Cell Anodes
625
12.3.3 Platinum Alloy Catalysts for Direct Methanol Fuel Cell Anodes
625
12.3.4 Methanol-tolerant Catalysts for Direct Methanol Fuel Cell Cathodes
627
12.4 Conclusions
628
References
629
13 Platinum-based Alloy Catalysts for PEM Fuel Cells 631
Hansan Liu, Dingguo Xia and Jiujun Zhang
13.1 Introduction
631
13.2 Pt-based Alloy Catalysts for PEM Fuel Cell Cathodes
632
13.2.1 The Alloying Effect on Cathode Catalyst Activity
632
13.2.2 Mechanism of the Alloying Effect on Cathode Catalysts
635
13.2.3 Stability of Pt-based Alloy Cathode Catalysts
640
13.3 Pt-based Alloy Catalysts for DMFC Anodes
643
13.3.1 The Alloying Effect on Anode Catalyst Activity
643
13.3.2 Mechanism of the Alloying Effect on Anode Catalysts
646
13.3.3 The Stability of Pt-based Alloy Anode Catalysts
649
13.4 Concluding Remarks
650
References
651
14 Nanotubes, Nanofibers and Nanowires as Supports for Catalysts 655
Xueliang Sun and Madhu Sudan Saha
14.1 Introduction
655
14.1.1 The Importance of Combining Nanotechnology and Clean Energy
655
14.1.2 One-dimensional Nanomaterials Based New Catalyst Supports
656
14.2 Synthesis and Characterization of Carbon Nanotubes, Nanofibers, and Nanowires
657
14.2.1 Structure and Synthesis Methods for Carbon Nanotubes
657
14.2.2 Structure and Synthesis Methods for Carbon Nanofibers
661
14.2.3 Structure and Synthesis Methods for Nanowires
661
14.3 Synthesis and Characterization of Pt Catalysts Supported on Carbon Nanotubes, Carbon Nanofibers and Metal Oxide Nanowires
665
14.3.1 Introduction
665
14.3.2 Methods for Depositing Pt Catalysts on Carbon Nanotubes (Pt/CNTs)
666
14.3.3 Methods for Depositing Pt Catalysts on Carbon Nanofibers (Pt/CNFs)
682
14.3.4 Methods for Depositing Pt Catalysts on Metal Oxide Nanowires (Pt/NWs)
684
14.3.5 Methods of Functionalizing of Carbon Nanotubes and Nanofibers-based Fuel Cell Electrodes
687
14.4 Activity Validation of the Synthesized Catalysts in a Fuel Cell Operation
693
14.4.1 Fabrication of Membrane Electrode Assembly for Carbon Nanotubes and Nanofibers-based Catalysts
693
14.4.2 Performance of Carbon Nanotubes and Nanofibers Membrane Electrode Assembly
697
14.5 Stability of Carbon Nanotubes and Nanofibers-based Fuel Cell Electrodes
700
14.6 Conclusions and Future Perspective
702
References
704
15 Non-noble Electrocatalysts for the PEM Fuel Cell Oxygen Reduction Reaction 715
Kunchan Lee, Lei Zhang and Jiujun Zhang
15.1 Introduction
715
15.2. Transition Metal Macrocycles for the Oxygen Reduction Reaction
716
15.2.1. The Central Transition Metal Effect
717
15.2.2. The Ligand Effect
719
15.2.3. The Heat-treatment Effect
720
15.2.4. The Effect of the Synthesis Method
721
15.3 Non-noble Transition Metal Carbides and Nitrides for the ORR
725
15.3.1 Carbides
725
15.3.2 Nitrides
728
15.3.3 Oxynitrides
730
15.3.4 Carbonitrides
733
15.4 Transition Metal Chalcogenides for the ORR
734
15.5 Metal Oxides for the ORR
742
15.6 Conclusions
748
References
748
16 CO-tolerant Catalysts 759
Siyu Ye
16.1 Introduction
759
16.2 Mechanisms of CO Tolerance
764
16.2.1 Electrochemistry of Carbon Monoxide and Hydrogen
766
16.2.2 Characteristics of PEMFC CO Poisoning
770
16.2.3 Bifunctional Mechanism of CO Tolerance
771
16.2.4 Direct Mechanism of CO Tolerance (Ligand or Electronic Effect)
773
16.2.5 Surface Science Study and Modeling of CO-tolerance Mechanism
774
16.3 Development of CO-tolerant Catalysts
781
16.3.1 PtRu Binary System
783
16.3.2 PtMo Binary System
787
16.3.3 PtSn Binary System
790
16.3.4 PtM (M = Fe, Co, Ni, Ta, Rh, Pd) Binary Systems
791
16.3.5 PtRuM (M = Mo, Sn, W, Cr, Zr, Nb, Ag, Au, Rh, Os, and Ta) Ternary Systems
794
16.3.6 The Pt, PtRu-MOx, (M = Mo, W, and V) System
796
16.3.7 Ru-modified Pt Catalysts and Pt-modified Ru Catalysts
799
16.3.8 PtRu on Functionalized Carbon and Carbon Nanotube Systems
802
16.3.9 PtAu Binary System
804
16.3.10 Pt-free Systems
804
16.4 Preparation of CO-tolerant Catalysts
805
16.5 Conclusions
809
References
811
17 Reversal-tolerant Catalyst Layers 835
Siyu Ye
17.1 Introduction
835
17.2 Cell Voltage Reversal
838
17.2.1 Air Starvation
838
17.2.2 Fuel Starvation
839
17.2.3 Electrocatalyst Degradation in PEM Fuel Cells Caused by Cell Voltage Reversal During Fuel Starvation
842
17.3 Development of Reversal-tolerant Catalyst Layers
845
17.3.1 Reversal Tolerance Cathode Catalyst Layer
846
17.3.2 Reversal Tolerance Anode Catalyst Layer
847
17.4 Conclusions
856
References
856
18 High-temperature PEM Fuel Cell Catalysts and Catalyst Layers 861
Chaojie Song, Rob Hui and Jiujun Zhang
18.1 Opportunities and Challenges for High-temperature PEM Fuel Cells
861
18.1.1 Advantages of High-temperature PEM Fuel Cells
861
18.1.2 Routes to Increase the Operating Temperature
867
18.1.3 Challenges of Catalysts/Catalyst Layers
867
18.2 Catalysts for High-temperature PEM Fuel Cells
868
18.2.1 Current Research Activities
868
18.2.2 Degradation of Catalysts at High Temperatures
869
18.2.3 Catalyst Support Strategy to Improve High-temperature Catalysts/Catalyst Layers
876
18.2.4 High-temperature Catalyst Layers — Components and Structure
877
18.2.5 Strategies for HT Catalyst/Catalyst Layer Performance Improvement and Mitigation
878
18.2.6 Suggestions for Future Work
878
18.2.7 Typical Example Analysis
878
18.3 Summary
884
References
884
19 Conventional Catalyst Ink, Catalyst Layer and MEA Preparation 889
Huamin Zhang, Xiaoli Wang, Jianlu Zhang and Jiujun Zhang
19.1 Introduction
889
19.2 Principles of Gas Diffusion Electrodes and MEA Structure
889
19.3 Catalyst Layer
893
19.3.1 Preparation of Catalyst Ink
893
19.3.2 Preparation of the Catalyst Layer
895
19.4 Preparation of the MEA
911
19.5 Summary and Outlook
911
References
912
20 Spray-based and CVD Processes for Synthesis of Fuel Cell Catalysts and Thin Catalyst Layers 917
Radenka Maric
20.1 Introduction
917
20.2 Spray Pyrolysis Approach
919
20.2.1 Current Research Activities
919
20.2.2 Spray Conversion and Aerosol Routes for Powder Manufacturing
919
20.2.3 Pt Nanoparticle Preparation via Spray Route
921
20.2.4 Morphology of Catalyst Deposited by Spray Pyrolysis
922
20.2.5 Electrochemical Performance
925
20.2.6 Electrocatalytic Activity and Stability of Pt-based Catalysts
926
20.2.7 Typical Example Analysis
928
20.3 Deposition of Catalyst Layer by CVD
929
20.3.1 Current Research Activities
930
20.3.2 Film Formation from Vapor Phase by CVD
931
20.3.3 Morphological and Microstructural Stability
933
20.3.4 Electrochemical Performance and Catalytic Activity
935
20.3.5 Typical Examples Analysis
939
20.4 Flame-based Processing
941
20.4.1 Current Research Activities
942
20.4.2 Atomization Process
943
20.4.3 Particle Formation in the Flame
944
20.4.4 Particle Size Control
946
20.4.5 Electrochemical Performance and Catalytic Activity of the Flame Deposited Catalyst
950
20.4.6 Typical Examples Analysis
954
20.5 Summary
958
References
958
21 Catalyst Layer/MEA Performance Evaluation 965
Jianlu Zhang and Jiujun Zhang
21.1 Introduction
965
21.2 Theoretical Analysis
966
21.2.1 Open Circuit Voltage (OCV) of the PEMFC
966
21.2.2 Exchange Current Density, io
968
21.2.3 Tafel Slope, b
968
21.2.4 Polarization Curve Analysis
971
21.3 Physical Chemistry Evaluation of Catalyst Layer
973
21.3.1 Pore Structure Analysis of Catalyst Layer
973
21.3.2 Protonic and Electronic Conductivity in the Catalyst Layer
974
21.3.3 Wettability of the Catalyst Layer
975
21.4 Catalyst Layer Evaluation in a Half-cell
978
21.4.1 Rotating Disk Electrode (RDE) Test
978
21.4.2 Cyclic Voltammetry (CV) Test
981
21.4.3 Polarization Curves in a Half-cell
984
21.5 MEA Evaluation by the Single-cell Test
986
21.5.1 Test Station
986
21.5.2 Polarization Curve
988
21.5.3 Resistance Test – AC Impedance Test
988
21.5.4 Permeability/Crossover Test
992
21.6 Lifetime/Durability Testing of the MEA
994
21.6.1 Mechanisms of MEA Degradation
994
21.6.2 Durability Testing
996
21.7 Conclusions
997
References
997
22 Catalyst Layer Composition Optimization 1003
Wei Xing
22.1 Catalyst Layer Materials Selection and Evaluation
1003
22.1.1 Catalyst selection
1003
22.1.2 Gas Diffusion Layer (GDL) and Microporous Layer (MPL) Materials Selection
1011
22.2 Fabrication Optimization Processes for the Catalyst Layer of MEAs
1016
22.2.1 GDL Substrate Preparation
1016
22.2.2 Microporous Layer (MPL) Preparation and Optimization
1017
22.2.3 Catalyst Ink Composition and Preparation
1019
22.2.4 Carbon-supported Catalyst Layer Fabrication
1023
22.2.5 Pt Catalyst Layer Fabrication
1027
22.2.6 MEA Fabrication and Optimization
1029
22.3 MEA Performance Verification with its Catalyst Layer Fabrication Optimization Process
1031
22.3.1 MEA Performance Characterization
1031
22.3.2 MEA Water Management Characterization
1032
22.3.3 MEA CO and Other Contamination Tolerance
1032
22.3.4 MEA Lifetime Enhancement via MEA Fabrication Process Improvement
1033
References
1033
23 Catalyst Layer Degradation, Diagnosis and Failure Mitigation 1041
Jing Li
23.1 Introduction
1041
23.2 Diagnosis of Catalyst Layer Degradation: Fuel Cell Failure Analysis
1044
23.2.1 Diagnostic Tools to Identify Catalyst Degradation During Fuel Cell Operation: Electrochemical Methods
1045
23.2.2 Ex situ Tools for Characterization of Catalyst Degradation During Fuel Cell Operation
1049
23.2.3 Durability and Accelerated Stress Testing
1054
23.3 Anode Catalyst Layer Degradation
1056
23.3.1 Anode Catalyst Layer Degradation Caused by Contamination
1056
23.3.2 Anode Catalyst Layer Degradation–Voltage Reversal
1061
23.3.3 Ru Leaching and Crossover
1064
23.4 Cathode Catalyst Layer Degradation
1066
23.4.1 Platinum Dissolution During Fuel Cell Operation
1066
23.4.2 Pt Accumulation and Distribution in the Membrane after Fuel Cell Operation
1073
23.4.3 Loss of Platinum Surface Area Due to Agglomeration
1075
23.4.4 Carbon Corrosion of Catalyst Layer
1080
23.5 Summary
1087
References
1089
Acronyms and Abbreviations 1095
Contributor Biographies 1103
Author Index 1117
Subject Index 1119
Dr Jiujun Zhang is a Senior Research Officer and PEM Catalysis Core Competency Leader at the National Research Council of Canada Institute for Fuel Cell Innovation (NRC-IFCI). Dr Zhang has over twenty-six years of R&D experience in theoretical and applied electrochemistry, including over twelve years of fuel cell R&D (among these six years at Ballard Power Systems and four years at NRC-IFCI), and three years of electrochemical sensor experience. Dr Zhang holds seven adjunct professorships, including one at the University of Waterloo and one at the University of British Columbia. His research is based on: low/non-Pt cathode catalyst development with long-term stability for catalyst cost reduction; preparation of novel material-supported Pt catalysts through ultrasonic spray pyrolysis; catalyst layer/cathode structure; fundamental understanding through first principles theoretical modeling; catalyst layer characterization and electrochemical evaluation; and preparation of cost-effective MEAs for fuel cell testing and evaluation. Dr Zhang has co-authored more than 140 research papers published in refereed journals and holds over ten US patents. He has also produced in excess of seventy industrial technical reports. Dr Zhang is an active member of The Electrochemical Society, the International Society of Electrochemistry, and the American Chemical Society.