Atnaujinkite slapukų nuostatas

El. knyga: Performance Evaluation of Industrial Systems: Discrete Event Simulation in Using Excel/VBA, Second Edition 2nd edition [Taylor & Francis e-book]

(University of Arkansas, Fayetteville, USA), (Tennessee Tech University, Cookeville, USA)
  • Formatas: 504 pages, 109 Tables, black and white; 578 Illustrations, black and white
  • Išleidimo metai: 11-Apr-2012
  • Leidėjas: CRC Press Inc
  • ISBN-13: 9780429251399
Kitos knygos pagal šią temą:
  • Taylor & Francis e-book
  • Kaina: 180,03 €*
  • * this price gives unlimited concurrent access for unlimited time
  • Standartinė kaina: 257,19 €
  • Sutaupote 30%
  • Formatas: 504 pages, 109 Tables, black and white; 578 Illustrations, black and white
  • Išleidimo metai: 11-Apr-2012
  • Leidėjas: CRC Press Inc
  • ISBN-13: 9780429251399
Kitos knygos pagal šią temą:
"Discussing fundamental modeling tools, queuing theory, and discrete event simulation for evaluating production systems, this book presents a development environment for discrete event simulation in a language easy enough to use but flexible enough to facilitate modeling complex systems. Incorporating the use of discrete simulation to statistically analyze a system and render the most efficient time-sequences, designs, upgrades, and operations, this new edition develops new visualization graphics for DEEDS software, includes improvements in the optimization of the simulation algorithms, and adds a chapter on queuing models"--

Industrial engineers Elizandro (Tennessee Technological U.) and Taha (U. of Arkansas) describe systems modeling and analysis to assess the performance of manufacturing, logistics, and other production systems ranging from health care to computers and data communication. They assume a fundamental familiarity with modeling concepts and the Excel computer program, but no prior programming experience. Their topics include basic queuing models, design environment for discrete event simulation (DEEDS), analyzing simulation results, facilities layout models, and supply chain models. Annotation ©2012 Book News, Inc., Portland, OR (booknews.com)

Basic approaches to discrete simulation have been process simulation languages (e.g., GPSS) and event-scheduling type (e.g., SIMSCRIPT). The trade-offs are that event-scheduling languages offer more modeling flexibility and process-oriented languages are more intuitive to the user. With these considerations in mind, authors David Elizandro and Hamdy Taha embarked on the development of a new discrete simulation environment that is easy to use, yet flexible enough to model complex production systems. They introduced this environment, Design Environment for Event Driven Simulation (DEEDS), in Simulation of Industrial Systems: Discrete Event Simulation in Using Excel/VBA. The DEEDS environment is itself an Excel/VBA add-in.

Based on this foundation, the second edition, now titled Performance Evaluation of Industrial Systems: Discrete Event Simulation in Using Excel/VBA incorporates the use of discrete simulation to statistically analyze a system and render the most efficient time sequences, designs, upgrades, and operations. This updated edition includes new visualization graphics for DEEDS software, improvements in the optimization of the simulation algorithms, a new chapter on queuing models, and an Excel 2007 version of the DEEDS software. Organized into three parts, the book presents concepts of discrete simulation, covers DEEDS, and discusses a variety of applications using DEEDS.

The flexibility of DEEDS makes it a great tool for students or novices to learn concepts of discrete simulation and this book can form the basis of an introductory undergraduate course on simulation. The expanded depth of coverage in the second edition gives it a richness other introductory texts do not have and provides practitioners a reference for their simulation projects. It may also be used as a research tool by faculty and graduate students who are interested in "optimizing" production systems.

Preface xiii
Acknowledgments xvii
Authors xix
PART I MODELING FUNDAMENTALS
1 Introduction to Modeling
3(8)
1.1 Introduction
3(1)
1.2 Model Design
3(1)
1.3 Hierarchical Modeling
4(1)
1.4 Analytic Models
5(1)
1.5 Simulation Models
5(3)
1.5.1 Simulation Model Complexity
6(1)
1.5.2 Simulation Scripts
7(1)
1.5.3 System Performance Measures
7(1)
1.6 Organization of This Book
8(3)
Reference
9(1)
Suggested Reading
9(2)
2 Basic Queuing Models
11(30)
2.1 Introduction
11(1)
2.2 Elements of a Queuing Model
12(2)
2.3 Role of the Exponential Distribution
14(1)
2.4 Pure Arrival and Departure Models
15(4)
2.4.1 Pure Arrival Model
15(2)
2.4.2 Pure Departure Model
17(2)
2.5 General Poisson Queuing Model
19(10)
2.5.1 Steady-State Systems
19(1)
2.5.2 Steady-State Performance Measures
20(1)
2.5.3 Single-Server Model
21(3)
2.5.4 Multiple-Server Models
24(2)
2.5.4.1 Special Multiple-Server Models
26(3)
2.6 Jackson Network Models
29(4)
2.7 Closed Form versus Discrete Event Simulation Models
33(8)
Problems
34(5)
References
39(2)
3 Simulation Modeling
41(6)
3.1 Introduction
41(1)
3.2 Types of Simulation
42(1)
3.3 The Simulation Clock
43(1)
3.4 Randomness in Simulation
44(1)
3.5 Discrete Simulation Languages
44(1)
3.6 Simulation Projects
45(1)
3.7 Design Environment for Event-Driven Simulation
45(2)
4 Probability and Statistics in Simulation
47(20)
4.1 Role of Probability and Statistics in Simulation
47(1)
4.2 Characterization of Common Distributions in Simulation
48(10)
4.2.1 Properties of Common Distributions
48(1)
4.2.1.1 Uniform Distribution
48(1)
4.2.1.2 Negative Exponential Distribution
48(1)
4.2.1.3 Gamma (Erlang) Distribution
49(1)
4.2.1.4 Normal Distribution
50(1)
4.2.1.5 Lognormal Distribution
50(1)
4.2.1.6 Weibull Distribution
51(1)
4.2.1.7 Beta Distribution
52(1)
4.2.1.8 Triangular Distribution
52(1)
4.2.1.9 Poisson Distribution
53(1)
4.2.2 Identifying Distributions on the Basis of Historical Data
54(1)
4.2.2.1 Building Histograms
54(1)
4.2.2.2 Goodness-of-Fit Tests
55(3)
4.2.2.3 Maximum Likelihood Estimates of Distribution Parameters
58(1)
4.3 Statistical Output Analysis
58(5)
4.3.1 Confidence Intervals
59(1)
4.3.1.1 Satisfying the Normality Assumption in Simulation
60(1)
4.3.2 Hypothesis Testing
60(3)
4.4 Summary
63(4)
Problems
63(2)
References
65(2)
5 Elements of Discrete Simulation
67(28)
5.1 Concept of Events in Simulation
67(1)
5.2 Common Simulation Approaches
67(8)
5.2.1 Event-Scheduling Approach
68(4)
5.2.2 Activity-Scanning Approach
72(2)
5.2.3 Process-Simulation Approach
74(1)
5.3 Computations of Random Deviates
75(7)
5.3.1 Inverse Method
76(2)
5.3.2 Convolution Method
78(1)
5.3.3 Acceptance-Rejection Method
79(2)
5.3.4 Other Sampling Methods
81(1)
5.3.5 Generation of (0, 1) Random Numbers
82(1)
5.4 Collecting Data in Simulation
82(13)
5.4.1 Types of Statistical Variables
82(2)
5.4.2 Histograms
84(3)
5.4.3 Queue and Facility Statistics in Simulation
87(1)
5.4.3.1 Queue Statistics
87(1)
5.4.3.2 Facility Statistics
88(3)
5.5 Summary
91(1)
Problems
91(2)
References
93(2)
6 Gathering Statistical Observations in Simulation
95(16)
6.1 Introduction
95(1)
6.2 Peculiarities of the Simulation Experiment
95(3)
6.2.1 Issue of Independence
95(1)
6.2.2 Issue of Stationarity (Transient and Steady-State Conditions)
96(2)
6.2.3 Issue of Normality
98(1)
6.3 Accounting for the Peculiarities of the Simulation Experiment
98(3)
6.3.1 Normality and Independence
98(1)
6.3.2 Transient Conditions
99(2)
6.4 Methods of Gathering Simulation Observations
101(5)
6.4.1 Subinterval Method
101(2)
6.4.2 Replication Method
103(1)
6.4.3 Regenerative Method
104(2)
6.5 Variance Reduction Technique
106(1)
6.6 Summary
107(4)
Problems
107(1)
References
107(4)
PART II EXCEL/VBA AND DESIGN ENVIRONMENT FOR DISCRETE EVENT SIMULATION (DEEDS)
7 Overview of DEEDS
111(10)
7.1 Introduction
111(1)
7.2 Modeling Philosophy
111(2)
7.3 Basic Elements
113(1)
7.4 Basic Features
114(5)
7.4.1 Network Representation
114(1)
7.4.2 Time Management (Simulation Clock)
114(1)
7.4.3 DEEDS Class Definitions
115(1)
7.4.4 User's List Management
115(2)
7.4.5 Generation of Random Samples
117(1)
7.4.6 Gathering Statistical Observations
117(1)
7.4.7 Interactive Debugging and Trace
117(1)
7.4.8 Mathematical Expressions
118(1)
7.4.9 Initialization Capabilities
118(1)
7.4.10 Output Capabilities
118(1)
7.4.11 Model Documentation
118(1)
7.5 Develop and Execute a DEEDS Model
119(1)
7.6 Summary
119(2)
8 DEEDS Network Representation
121(8)
8.1 Introduction
121(1)
8.2 Nodes
121(1)
8.3 Transactions
122(1)
8.4 Lists
122(1)
8.5 Classes and Procedures
123(2)
8.6 Simulation Program
125(2)
8.7 Program Initial Conditions
127(1)
8.8 Model Development
128(1)
8.9 Summary
128(1)
9 VBA Programming
129(18)
9.1 Introduction
129(1)
9.2 Names
129(1)
9.3 Data Types
129(1)
9.4 Variable Definitions
130(1)
9.5 Constants
131(1)
9.6 Expressions
132(1)
9.7 Assignment Statements
132(2)
9.8 Control Structures
134(5)
9.8.1 If
134(3)
9.8.2 Case
137(1)
9.8.3 For
138(1)
9.8.4 Do
139(1)
9.9 Procedures
139(4)
9.9.1 Subs
140(2)
9.9.2 Functions
142(1)
9.10 Arrays
143(2)
9.11 Summary
145(2)
10 User Interface
147(22)
10.1 Introduction
147(1)
10.2 Overview of ProgramManager
147(1)
10.3 Source Nodes
148(2)
10.4 Queue Nodes
150(1)
10.5 Facility Nodes
150(1)
10.6 Delay Nodes
151(1)
10.7 Initial Model
151(6)
10.7.1 Build VBA Code
153(3)
10.7.2 Program Execution
156(1)
10.7.3 Viewing Options
157(1)
10.8 Model Development
157(3)
10.9 Statistical Variables
160(4)
10.10 User-Defined Probability Functions
164(1)
10.11 User-Defined Tables
165(1)
10.12 Program Execution---Expanded
165(2)
10.13 Summary
167(2)
11 Modeling Procedures
169(40)
11.1 Introduction
169(1)
11.2 VBA Procedures
169(1)
11.3 Simulator Procedures
170(1)
11.4 DEEDS Classes
171(21)
11.4.1 Source
172(2)
11.4.2 Queue
174(4)
11.4.3 Facility
178(6)
11.4.4 Delay
184(1)
11.4.5 Transaction
185(4)
11.4.6 Statistic
189(1)
11.4.7 PDF
190(2)
11.4.8 Table
192(1)
11.5 Distribution Functions
192(1)
11.6 Visual Basic Functions
193(1)
11.7 Excel Worksheet Functions
194(6)
11.8 Summary
200(9)
Problems
200(9)
12 Simulation Output
209(18)
12.1 Introduction
209(1)
12.2 Gathering Observations
209(1)
12.3 Simulation Messages
210(1)
12.4 Monitoring Simulation Execution
211(1)
12.5 Forced Model Termination
212(1)
12.6 Standard Output
212(6)
12.6.1 Source Sheet
213(1)
12.6.2 Queue Sheet
213(1)
12.6.3 Facility Sheet
213(3)
12.6.4 Delay Sheet
216(1)
12.6.5 Statistic Sheet
216(1)
12.6.6 UserOutput Sheet
216(2)
12.7 Model Verification
218(3)
12.7.1 User-Defined Simulator Messages
218(1)
12.7.2 Trace Report
219(1)
12.7.3 Collection Report
219(2)
12.8 VBA Interactive Debugger
221(4)
12.9 Summary
225(2)
13 Analysis of Simulation Results
227(10)
13.1 Introduction
227(3)
13.2 Effect of Transient State
230(3)
13.3 Gathering Statistical Observations
233(2)
13.4 Establishing Confidence Intervals
235(1)
13.5 Hypothesis Testing in Simulation Experiments
235(1)
13.6 Summary
236(1)
Reference
236(1)
14 Model Visualization
237(8)
14.1 Introduction
237(1)
14.2 Model Design
237(5)
14.3 Program Execution
242(1)
14.4 Summary
243(2)
15 Modeling Special Effects
245(18)
15.1 Introduction
245(1)
15.2 A Multiserver Facility to Represent Independent Facilities
245(2)
15.3 Facility Preemption Operation
247(2)
15.4 Limit on Waiting Time in Queues
249(2)
15.5 Time-Dependent Intercreation Times at a Source
251(1)
15.6 Network Logic Change Using Queue Nodes
252(2)
15.7 Controlled Blockage of a Facility
254(2)
15.8 Assemble and Match Sets with Common Queues
256(1)
15.9 Network Models
257(2)
15.10 Sampling without Replacement
259(4)
Problems
260(2)
Reference
262(1)
16 Advanced Routing Techniques
263(18)
16.1 Introduction
263(1)
16.2 Routing Transactions
263(8)
16.2.1 Always Routing
264(1)
16.2.2 Conditional Routing
264(1)
16.2.3 Select Routing
264(2)
16.2.3.1 Node Independent
266(1)
16.2.3.2 Current State of Node
266(2)
16.2.3.3 "Recent History" of Node
268(1)
16.2.4 Probabilistic Routing
268(1)
16.2.5 Dependent Routing
268(2)
16.2.6 Exclusive Routing
270(1)
16.2.7 Last Choice
271(1)
16.3 Synchronized Queues
271(4)
16.3.1 Match
272(1)
16.3.2 Assemble
273(2)
16.4 Summary
275(6)
Problems
275(6)
PART III APPLICATIONS
17 Simulation Project Management
281(12)
17.1 Introduction
281(1)
17.2 System Specification
281(2)
17.3 Simulation Constants, Decision Variables, and Constraints
283(2)
17.4 Data Specifications
285(2)
17.5 Project Management
287(3)
17.5.1 Problem Definition
287(1)
17.5.2 Preliminary Design
288(1)
17.5.3 Validate Design
289(1)
17.5.4 Model Development
289(1)
17.5.5 Model Verification
289(1)
17.5.6 Design/Conduct Experiments
290(1)
17.5.7 Summarize/Present the Results
290(1)
17.6 Summary
290(3)
References
291(2)
18 Facilities Layout Models
293(22)
18.1 Introduction
293(1)
18.2 Line Balancing
293(11)
18.3 Flexible Manufacturing Environment
304(11)
Reference
313(2)
19 Material-Handling Models
315(20)
19.1 Introduction
315(1)
19.2 Transporter Car
315(4)
19.3 Overhead Crane
319(5)
19.4 Carrousel Conveyor
324(3)
19.5 Belt Conveyor---Plywood Mill Operation
327(8)
References
334(1)
20 Inventory Control Models
335(14)
20.1 Introduction
335(1)
20.2 Discount Store Model
335(4)
20.3 Periodic Review Model
339(4)
20.4 Continuous Review Model
343(6)
References
347(2)
21 Scheduling Models
349(20)
21.1 Introduction
349(1)
21.2 Job Shop Scheduling
349(7)
21.3 PERT Project Scheduling
356(4)
21.4 Daily Manpower Allocation
360(9)
References
367(2)
22 Maintenance and Reliability Models
369(14)
22.1 Introduction
369(1)
22.2 General Reliability Model
369(5)
22.3 Maintenance Scheduling
374(9)
23 Quality Control Models
383(12)
23.1 Introduction
383(1)
23.2 Costing Inspection Plans
383(6)
23.3 Monitoring Control Charts
389(6)
Reference
394(1)
24 Supply Chain Models
395(30)
24.1 Introduction
395(1)
24.2 Port Operation
395(8)
24.3 Automatic Warehouse Operation
403(8)
24.4 Cross Dock Operations
411(14)
Problems
419(5)
References
424(1)
25 Analysis of Large Scale Models
425(16)
25.1 Introduction
425(1)
25.2 Evaluation of Alternatives
425(1)
25.3 Design of Experiments
426(2)
25.4 Simulation and Search Algorithms
428(1)
25.5 Cross Dock Problem
429(11)
25.6 Summary
440(1)
References
440(1)
Appendix A Excel 2003 Installation 441(14)
Appendix B Excel 2007 Installation 455(8)
Appendix C Classes and Procedures 463(8)
Appendix D Histograms Using Excel 471(6)
Index 477
David Elizandro, Tennessee Tech University

Hamdy Taha, University of Arkansas